Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of spectrin–actin assembly by erythrocyte adducin

Abstract

The spectrin-based membrane skeleton, an assembly of proteins tightly associated with the plasma membrane, determines the shape and mechanical properties of erythrocytes. Spectrin, the most abundant component of this assembly, is an elongated and flexible molecule that, with potentiation by protein 4.1, is cross-linked at its ends by short actin filaments to form a lattice beneath the membrane. These and other proteins stabilize the plasma membrane, organize integral membrane proteins and maintain specialized regions of the cell surface1,3. A membrane-skeleton-associated calmodulin-binding protein of erythrocytes4 is a major substrate for Ca2+- and phospholipid-dependent protein kinase C (ref. 5), and thus is a target for Ca2+ by two regulatory pathways. Here we demonstrate that this protein, called adducin: (1) binds tightly in vitro to spectrin-actin complexes but with much less affinity either to spectrin or to actin alone; (2) promotes assembly of additional spectrin molecules onto actin filaments; and (3) is inhibited in its ability to induce the binding of additional spectrin molecules to actin by micromolar concentrations of calmodulin and Ca2+. Adducin may be involved in the action of Ca2+ on erythrocyte membrane skeleton and in the assembly of spectrin-actin complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Marchesi, V. T. A. Rev. Cell Biol. 1, 531–561 (1985). 2. Bennett, V. A. Rev. Biochem. 54, 273–304 (1985). 3. Goodman, S. R. and Zagon, I. S. Am. J. Physiol. 250, 347–360 (1986). 4. Gardner, K. & Bennett, V. J. biol. Chem. 260, 1339–1348 (1986). 5. Ling, E., Gardner, K. & Bennett, V. /. biol. Chem. 261, 13875–13878 (1986). 6. Brenner, S. & Korn, E. / biol. Chem. 254, 8620–8627 (1979). 7. Bennett, V., Davis J. & Fowler, V. E. Nature 299, 126–131 (1982). 8. Gardner, K. & Bennett, V. J. cell biochem. (in the press). 9. Cheung, W. Y. Science 207, 19–27 (1980). 10. Burns, N. & Gratzer, W. Biochemistry 24, 3070–3074 (1985). 11. Husain, A., Howelett, G. J. & Sawyer, W. H. Biochem. biophys. Res. Commun. 122,1194–1200 (1984). 12. Sears, D. E., Marchesi, V. T. & Morrow, J. S. Biochem. biophys. Acta 870, 432–442 (1986). 13. Agre, P., Gardner, K. & Bennett, V. / biol. Chem. 258, 6258–6265 (1983). 14. Jarrett, H. & Penniston J T. J. biol. Chem. 253, 4676–4682 (1978). 15. Ohanian, V. et al. Biochemistry 23, 4416–4420 (1984). 16. Ungewickell, E., Bennett, P., Calvert, R., Ohanion, V. & Gratzer, W. Nature 280, 811–814 (1979). 17. Tyler, J. M, Reinardt, B. N. & Branton, D. / biol. Chem. 255, 7034–7039 (1980). 18. Cohen, C. M. & Foley, S. F. Biochemistry 23, 6091–6098 (1984). 19. Eder, P. S., Soong, C. J. & Tao, M. Biochemistry 25, 1764–1770 (1986). 20. Staufenbiel, M. & Lazarides, E. / Cell Biol. 102, 1157–1163 (1986). 21. Conboy, J., Mohandas, N., Tchernia, G. & Kan, Y. W. N. Engl. J. Med. 315,680–685 (1986). 22. Beaven, G. H. et al. Eur. J. Cell Biol. 36, 299–306 (1985). 23. Byers, T. J. & Branton, D. Proc. natn. Acad. Sci. U.S.A. 82, 6153–6157 (1985). 24. Shen, B. W., Josephs, R. & Steck, T. L. J. Cell Biol. 102, 997–1006 (1986). 25. Liu, S.–C., Derick, L. H. & Palek, J. J. Cell Biol. 104, 527–536 (1986). 26. Takakuwa, Y., Tchernia, G., Rossi, M., Benabadji, M. & Mohandas, N. / din. Invest. 78, 80–85 (1986). 27. Bourguignon, L. Y., Suchard, S. J., Nagpal, M. L. & Glenney, J. R. Jr J. Cell Biol. 101, 477–487 (1985). 28. Perrin, D. & Aunis, D. Nature 318, 585–591 (1985). 29. Fowler, V. M. & Bennett, V. /. biol. Chem. 259, 5978–5989 (1982). 30. Pardee, J. D. & Spudich, J. A. Meth. Cell Biol. 24, 271–289 (1982). 31. Bennett, V. Meth. Enzym. 96, 313–324 (1983). 32. Fairbanks, G., Steck, T. & Wallach, D. Biochemistry 10, 2606–2617 (1971). 33. Hunter, W. & Greenwood, F. Nature 194, 495–496 (1962). 34. Gopalakrishna, R. & Anderson, W. Biochem. biophys. Res. Commun. 104, 830–836 (1982). 35. Fabiato, A. & Fabiato, F. J. Physiol., Lond. 75, 463–505 (1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, K., Bennett, V. Modulation of spectrin–actin assembly by erythrocyte adducin. Nature 328, 359–362 (1987). https://doi.org/10.1038/328359a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/328359a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing