Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model for collimated outflows in molecular clouds and the case of HH 7–11

Abstract

Collimated outflows of high-velocity gas, with typical scale lengths of 0.01–0.2 pc, are often observed to be associated with linear chains of optical emission knots1, sometimes connected by faint nebulosities. The flows have been ascribed to the interaction between an energetic wind ejected by a young stellar object and circumstellar material. However, none of the acceleration and collimation mechanisms proposed so far can easily account for the most peculiar properties of the outflows, namely the almost constant spacing between the knots, their radial motion and the abrupt velocity changes along the flow, well illustrated by the prototype we use for our modelling, HH 7–11. We suggest here a new interpretation of the phenomenon, based on flows in a channel of variable cross-sectional area due to Kelvin–Helmholtz instabilities between the flow and the ambient medium; and present solutions of the Mach number equation for such a channel, which possess multiple critical points and shocks identified with the observed optical knots.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mundt, R. & Fried, J. W. Astrophys. J. 274, L83–L86 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Bally, J. & Lada, C. J. Astrophys. J. 265, 823–847 (1983).

    Google Scholar 

  3. Ferrari, A., Habbal, S. R., Rosner, R. & Tsinganos, K. Astrophys. J. 277, L35–L39 (1984).

    Article  ADS  Google Scholar 

  4. Strom, S. E., Grasdalen, G. L. & Strom, K. M. Astrophys. J. 191, 111–142 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Ho, P. T. P. & Barrett, A. H. Astrophys. J. 237, 38–54 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Snell, R. L. & Edwards, S. Astrophys. J. 251, 103–107 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Schwartz, P. R., Waak, J. A. & Smith, H. Z. Astrophys. J. 267, L109–L114 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Herbig, G. H. & Jones, B. F. Astr. J. 88, 1040–1052 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Strom, S. E., Vrba, F. J. & Strom, K. M. Astr. J. 81, 314–316 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Cohen, M. & Schwartz, R. D. Astrophys. J. 265, 877–900 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Bohm, K. H., Brugel, E. W. & Holmsted, E. Astr. Astrophys. 125, 23–28 (1983).

    ADS  Google Scholar 

  12. Spitzer, L. Jr Diffuse Matter in Space (Interscience, New York, 1968).

    Google Scholar 

  13. Bohlin, R. C., Savage, B. D. & Drake, J. F. Astrophys. J. 224, 132–142 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Snell, R. L., Bally, J., Strom, S. E. & Strom, K. M. Astrophys. J. 290, 587–595 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Ferrari, A., Trussoni, E. & Zaninetti, L. Mon. Not. R. astr. Soc. 196, 1051–1066 (1981).

    Article  ADS  Google Scholar 

  16. Parker, E. N. Interplanetary Dynamical Processes (Interscience, New York, 1963).

    MATH  Google Scholar 

  17. Kopp, R. A. & Holzer, T. E. Sol. Phys. 49, 43–56 (1976).

    Article  ADS  Google Scholar 

  18. Holzer, T. E. J. geophys. Res. 82, 23–35 (1977).

    Article  ADS  Google Scholar 

  19. Ferrari, A., Trussoni, E., Rosner, R. & Tsinganos, K. Astrophys. J. 300, 577–590 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Schwartz, R. D. Rev. Mex. Astr. Astrofis. 7, 27–54 (1983).

    ADS  CAS  Google Scholar 

  21. Mundt, R., Buhrke, T., Fried, J. W., Neckel, T., Sarcander, M. & Stocke, J. Astr. Astrophys. 140, 17–23 (1984).

    ADS  CAS  Google Scholar 

  22. Zealey, W. J., Williams, P. M. & Sandell, G. Astr. Astrophys. 140, L31–L34 (1984).

    ADS  CAS  Google Scholar 

  23. Lightfoot, J. F. & Glencross, W. M. Mon. Not. R. astr. Soc. 221, 993–1000 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Mundt, R. Can. J. Phys. 64, 407–413 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Fridlund, C. V. M., Sandqvist, Aa., Nordh, H. L. & Olofsson, G. Astr. Astrophys. 137, L17–L19 (1984).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvestro, G., Ferrari, A., Rosner, R. et al. A model for collimated outflows in molecular clouds and the case of HH 7–11. Nature 325, 228–230 (1987). https://doi.org/10.1038/325228a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325228a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing