Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A chimaeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor

Abstract

The cell surface receptors for insulin and epidermal growth factor (EGF) appear to share a common evolutionary origin, as suggested by structural similarity of cysteine-rich regions in their extracellular domains and a highly conserved tyrosine-specific protein kinase domain1-3. Only minor similarity is found outside this catalytic domain, as expected for receptors that have different ligand specificities and generate different biological signals4,5. The EGF receptor is a single polypeptide chain6 but the insulin receptor consists of distinct α and β summits7 that function as an α2β2 heterotetrameric receptor complex8-11. Provoked by this major structural difference in two receptors that carry out parallel functions, we have designed a chimaeric receptor molecule comprising the extracellular portion of the insulin receptor joined to the transmembrane and intracellular domains of the EGF receptor to investigate whether one ligand will activate the tyrosine kinase domain of the receptor for the other ligand. We show here that the EGF receptor kinase domain of the chimaeric protein, expressed transiently in simian cells, is activated by insulin binding. This strongly suggests that insulin and EGF receptors employ closely related or identical mechanisms for signal transduction across the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ullrich, A. et al. Nature 309, 418–425 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Ullrich, A. et al. Nature 313, 756–761 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Ebina, Y. et al. Cell 40, 747–758 1985).

    Article  CAS  Google Scholar 

  4. Kahn, C.R. A. Rev. Med. 36, 429–451 (1985).

    Article  CAS  Google Scholar 

  5. Herschman, H. R. in Control of Animal Cell Proliferation (eds Boynton, A. L. & Leffert, H. L.) 169–199 (Academic, New York, 1985).

    Book  Google Scholar 

  6. Cohen, S., Fava, R. A. & Sawyer, S. T. Proc. natn. Acad. Sci. U.S.A. 79, 6237–6241 1982).

    Article  ADS  CAS  Google Scholar 

  7. Kasuga, M., Hedo, J. A., Yamada, K. M. & Kahn, C. R. J. biol Chem. 257, 10392–10399 (1982).

    CAS  PubMed  Google Scholar 

  8. Hedo, J. A., Kasuga, M., Van Obberghen, E., Roth, J. & Kahn, C. R. Proc. natn. Acad. Sci. U.S.A. 78, 4791–4795 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Massague, J., Pilch, P. F. & Czech, M. P. J. biol. Chem. 256, 3182–3190 (1981).

    CAS  PubMed  Google Scholar 

  10. Van Obberghen, E. et al. Proc. natn. Acad. Sci. U.S.A. 78, 1052–1056 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Fujita-Yamaguchi, Y. J. biol. Chem. 259, 1206–1211 (1984).

    CAS  PubMed  Google Scholar 

  12. Kasuga, M., Kahn, C. R., Hedo, J. A., Van Obberghen, E. & Yamada, K. M. Proc. natn. Acad. Sci. U.S.A. 78, 6917–6921 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Reed, B. C., Ronnett, G. V. & Lane, D. Proc. natn. Acad. Sci. U.S.A. 78, 2908–2912 (1981)

    Article  ADS  CAS  Google Scholar 

  14. Deutsch, P. J., Wan, C. F., Rosen, O. M. & Rubin, C. S. Proc. natn. Acad. Sci. U.S.A. 80, 133–136 (1983).

    Article  ADS  CAS  Google Scholar 

  15. White, M. F., Haring, H.-U., Kasuga, M. & Kahn, C. R. J. biol. Chem. 259, 255–264 (1984).

    CAS  PubMed  Google Scholar 

  16. Petruzelli, L., Herrera, R. & Rosen, O. M. Proc. natn. Acad. Sci. U.S.A. 81, 3327–3331 (1984).

    Article  ADS  Google Scholar 

  17. Erneux, C., Cohen, S. & Garbers, D. J. biol. Chem. 258, 4137–4142 (1983).

    CAS  PubMed  Google Scholar 

  18. Massague, J. & Czech, M. P. J. biol. Chem. 257, 5038–5045 (1982).

    CAS  PubMed  Google Scholar 

  19. Simonsen, C. C. & Levinson, A. D. Proc. natn. Acad. Sci. U.S.A. 80, 2495–2499 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Lusky, M. & Botchan, M. Nature 293, 79–81 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Graham, F. L. & van der Eb, A. J. Virology 52, 456–467 (1973).

    Article  CAS  Google Scholar 

  22. Ganguly, S., Petruzzelli, L. M., Herrera, R., Stadtmauer, L. & Rosen, O. M. Curr. Top. cell. Regul. 27, 83–94 (1985).

    Article  CAS  Google Scholar 

  23. Waterfield, M. D. et al. J. cell Biochem. 20, 149–161 (1982).

    Article  CAS  Google Scholar 

  24. Kris, R. M. et al. Cell 40, 619–625 (1985).

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, H., Dull, T., Schlessinger, J. et al. A chimaeric receptor allows insulin to stimulate tyrosine kinase activity of epidermal growth factor receptor. Nature 324, 68–70 (1986). https://doi.org/10.1038/324068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324068a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing