Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorylation of tubulin enhances its interaction with membranes

Abstract

Tubulin, the main component of intracellular microtubules, is also a major protein in subcellular membrane preparations1–4 and can interact with biological5–7 and artificial8–12 membranes in vitro. Of particular interest is the association of tubulin with postsynaptic junctional lattices enriched in a polypeptide of relative molecular mass (Mr) 50,000 (50K)13, recently identified as the major subunit of the calmodulin-dependent protein kinase14. Phosphorylation of tubulin with a calmodulin-dependent protein kinase similar to that found in postsynaptic densities inhibits its ability to self-assemble into microtubules in a reversible fashion15. This involves the phosphorylation of residues in its 4K carboxy-terminal region, a domain that seems to regulate its self-assembly16–18. The results presented here suggest that the phosphorylation of tubulin with this kinase enhances its ability to interact with membranes. This effect is reversible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marotta, C. A., Stocchi, P. & Gilbert, J. M. Brain Res. 167, 93–106 (1979).

    Article  CAS  Google Scholar 

  2. Zisapel, N., Levi, N. & Gozes, I. J. Neurochem. 45, 490–496 (1980).

    Google Scholar 

  3. Estridge, M. Nature 268, 60–63 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Hargreaves, A. J. & Avila, J. J. Neurochem. 45, 490–496 (1985).

    Article  CAS  Google Scholar 

  5. Soifer, D. & Czosnek, H. J. Neurochem. 35, 1128–1136 (1980).

    Article  CAS  Google Scholar 

  6. Bernier-Valentin, F. & Rousset, B. J. biol Chem. 257, 7092–7099 (1982).

    CAS  PubMed  Google Scholar 

  7. Bernier-Valentin, F., Aunis, D. & Rousset, B. J. Cell Biol. 97, 209–216 (1983).

    Article  CAS  Google Scholar 

  8. Caron, J. M. & Berlin, R. D. J. Cell Biol. 81, 665–671 (1979).

    Article  CAS  Google Scholar 

  9. Berlin, R. D., Caron, J. M., Huntley, R., Melmed, R. N. & Oliver, J. M. in Biological Functions of Microtubules and Related Structures (eds Sakai, M., Mohri, H. & Borisy, G. G.) 405–423 (Academic, New York, 1982).

    Book  Google Scholar 

  10. Klausner, R. D., Kumar, N., Weinstein, J. N., Blumenthal, R. & Flavin, M. J. biol. Chem. 256, 5879–5885 (1981).

    CAS  PubMed  Google Scholar 

  11. Kumar, N., Klausner, R. D., Weinstein, J. N., Blumenthal, R. & Flavin, M. J. biol. Chem. 256, 5886–5889 (1981).

    CAS  PubMed  Google Scholar 

  12. Kumar, N., Blumenthal, R., Henkart, M., Weinstein, J. N. & Klausner, R. D. J. biol Chem. 257, 15137–15144 (1982).

    CAS  PubMed  Google Scholar 

  13. Kennedy, M. B., Bennett, M. K. & Erondu, N. E. Proc. natn. Acad. Sci. U.S.A. 80, 7357–7361 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Walters, B. B. & Matus, A. I. Nature 257, 496–498 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Wandosell, F., Serrano, L., Hernández, M. A. & Avila, J. J. biol. Chem. 261, 10332–10339 (1986).

    CAS  PubMed  Google Scholar 

  16. Serrano, L., Avila, J. & Maccioni, R. B. Biochemistry 23, 4675–4681 (1984).

    Article  CAS  Google Scholar 

  17. Serrano, L. de la Torre, J., Maccioni, R. B. & Avila, J. Proc. natn. Acad. Sci. U.S.A. 81, 5985–5993 (1984).

    Article  ADS  Google Scholar 

  18. Serrano, L. Montejo de Garcini, E., Hernández, M. A. & Avila, J. Eur. J. Biochem. 153, 595–600 (1986).

    Article  Google Scholar 

  19. Weingarten, M., Lockwood, A., Hwo, S. & Kirschner, M. W. Proc. natn. Acad. Sci. U.S.A. 72, 1858–1862 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Bradford, M. M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  21. Roth, J. Tech. Immunochem. 1, 108–133 (1982).

    Google Scholar 

  22. Helenius, A. & Simons, K. Proc. natn. Acad. Sci. U.S.A. 74, 529–532 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Shelanski, M. L., Gaskin, F. & Cantor, C. R. Proc. natn. Acad. Sci. U.S.A. 70, 765–768 (1973).

    Article  ADS  CAS  Google Scholar 

  24. Arce, C. A., Rodriguez, J. A., Barra, H. & Caputto, R. Eur. J. Biochem. 59, 145–149 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hargreaves, A., Wandosell, F. & Avila, J. Phosphorylation of tubulin enhances its interaction with membranes. Nature 323, 827–828 (1986). https://doi.org/10.1038/323827a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323827a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing