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New ways with classical mechanics 
For about a century, the chief defect of classical mechanics has been that most problems within its ken 
have been insoluble. Now there is some hope that complex systems will be tractable. 

THE optimism of nineteenth-century phy
sics in its belief that all problems could be 
solved by Newton's laws and their later 
elaboration is now well recognized and 
widely scorned, but not for all of the right 
reasons. The nineteenth century was just
ly proud of the sophistication of schemes 
such as hamiltonian mechanics, which 
offered the solution of all problems pro
vided that the arithmetic (or algebra, or 
calculus) was feasible. 

The usual complaint is that the optim
ists overlooked the threat to the founda
tions of mechanics embodied first by Max
well's theory of electromagnetism and, 
later, by even more subversive develop
ments. More recently, people have also 
been saying that it was foolish of the nine
teenth century to suppose that the arith
metic of the solution of real problems, 
with numbers of variables of the order of 
10'" would be simply a procedural matter. 
But now, almost a century after the full 
flowering of nineteenth-century optim
ism, the question arises whether the critics 
might not themselves have used the inter
val more constructively. 

Classical mechanics is fine so far as it 
goes, but that is not very far. Only the 
simplest problems are soluble. For the 
rest, it is possible to extract from, for ex
ample, the hamiltonian formalism a few 
'constants of the motion' which may, in 
special circumstances, be physically re
levant. But what use can it be, for exam
ple, in an attempt to calculate the Curie 
temperature above which a ferromagnetic 
material cannot be permanently magne
tized, to know that the physical linear and 
angular momenta of the specimen will be 
conserved? The quantities that naturally 
arise in nineteenth-century mechanics are 
often not particularly interesting. 

That is why there has recently been such 
interest in other ways of calculating the 
physical properties of even classical com
plex systems. The twentieth century's 
shame is that most of these schemes are 
only recent. One landmark is the exact 
calculation, by Onsager in the 1940s, of 
the properties of a two-dimensional Ising 
lattice, most simply a square lattice whose 
vertices are of two kinds and in which only 
pairs of nearest neighbours interact. This 
can serve both as a model for order
disorder in alloys such as ~-brass and for 
ferromagnetism. Another closely related 
approach to the calculation of complex 
systems is that represented by cellular 
automata, which may be likened to living 

organisms that replicate themselves from 
one generation to the next by means of 
formal rules. 

The objection to most of these methods 
is that they tend to require numerical 
simulation, so that general principles can 
be discovered only with difficulty and 
enormous labour. One of the most famil
iar illustrations is the use ofT.A. Witten's 
model of the process of aggregation for 
studying the formation of aggregates in 
circumstances where the process is limited 
by the rate of diffusion (Witten, T.A. & 
Sander, L.M. Phys. Rev. Lett. 47, 1400; 
1984); the proof that aggregates are fractal 
structures has nevertheless helped to de
velop scaling laws relating the total mass 
of an aggregate to its linear dimensions, 
for example. 

Two other kinds of problems conven
tionally tackled numerically have now 
been given more general treatment, sug
gesting that people's ambitions are now 
rising to the point at which it may be feas
ible to ask interesting questions of some 
simple models of complex behaviour. One 
such model is that of the process of dif
fusion on a tree-structured lattice, which is 
in principle a model for all kinds of 
systems. If the 'leaves' of a tree-shaped 
graph are the blind end-points most dis
tant from the root, for example, it is a fair 
question to ask how an arbitrary distribu
tion of some attribute among the leaves 
will rearrange itself statistically if par
ticles, or attributes, can move from one 
leaf to another only by the branches of the 
underlying tree. 

Constantin P. Bachas and B.A. Huber
man rightly note, in an article just pub
lished, that the rearrangement of some 
attribute among the leaves of a tree is a 
process representative of the behaviour 
of systems organized on hierarchical lines 
(Phys. Rev. Lett. 57, 1965; 1986). In this 
spirit, for example, one might ask how the 
microscopic properties of protein molecu
les are determined by the hierarchy of 
amino-acid sequence and domain struc
ture. The particular interest of what they 
have now accomplished is what seems like 
an analytical solution of the problem of 
diffusion on a tree-shaped graph even if 
the underlying sturcture (for example, the 
number of branches at each vertex) is far 
from simple. 

Bachas and Huberman work with the 
concept of the redistribution of probabil
ity among the leaves of a tree, but the idea 
is more generally applicable. One of their 

conclusions is that the process of relaxa
tion, or rearrangement towards a stable 
configuration, is most rapid for fat than 
for thin trees, which may not in itself be 
surprising; several branches at each vertex 
will give both a more bushy tree and more 
opportunities for lateral transport. It is 
more surprising that they conclude that 
diffusion is inherently more rapid for uni
form trees (with a fixed number of bran
ches at each vertex) and for random 
trees than for all intermediate structures. 

The succeeding article in the same issue 
of the same journal is a step in the same 
direction by Martin Grant and J.D. Gun
ton of Temple University in Philadelphia. 
What they have done is to construct a con
tinuum analogue of the cellular auto
maton construction - and to solve it 
(ibid., p.1970). The essence of the prob
lem is that, unlike the microscopic dyna
mics of the nineteenth century, this prob
lem is irreversible in time. There is an 
obvious connection with irreversible 
dynamics, where the transformation of 
the state of a mechanical system from one 
instant to the next is represented by a 
matrix which is not unitary (or hermitian). 
These are also of course the systems in 
which people such as lIya Prigogine have 
argued that highly organized systems 
(such as living things) may emerge not 
merely as accidents but because they are 
enforced by the underlying dynamics. 

Grant and Gunton give an elegant 
account of how it may be possible to iso
late from all the variables of a complex 
system those which vary only slowly (com
pared with others) in time, and of how 
dissipation can force the 'slow' variables 
to grow exponentially with time, at least at 
the beginning of the evolution of a system. 
The argument makes believable the 
observation, in numerical simulations of 
cellular automata, of recurring apparently 
well ordered patterns. The authors refer 
in passing to the familiar rapid growth of 
dendrites in crystallizing systems; these 
are structures far from ordinary thermo
dynamic equilibrium that appear to be 
forced by the underlying physics. Whether 
Grant and Gurton's conjecture of "irre
versibility leading to [thermodynamic 1 
instability" will be found valid, and 
whether it will, for example, account for 
the existence of self-organizing systems 
such as living things, is for the time being 
an open question. But it is an important 
question, far removed from hamiltonian 
dynamics. John Maddox 


	New ways with classical mechanics

