Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinal ganglion cells lose response to laminin with maturation

Abstract

The decisive role played by adhesive interactions between neuronal processes and the culture substrate in determining the form and extent of neurite outgrowth in vitro1,2 has greatly influenced ideas about the mechanisms of axonal growth and guidance in the vertebrate nervous system. These studies have also helped to identify adhesive molecules that might be involved in guiding axonal growth in vivo. One candidate molecule is laminin, a major gly-coprotein of basal laminae3 which has been shown to induce a wide variety of embryonic neurones to extend neurites in culture4–8. Moreover, laminin is found in large amounts in injured nerves that can successfully regenerate but is absent from nerves where regeneration fails9–11. However, it is unclear to what extent the mechanisms that regulate axonal regeneration also operate in the embryo when axon outgrowth is initiated. Here we have examined the substrate requirements for neurite outgrowth in vitro by chick embryo retinal ganglion cells, the only cells in the retina to send axons to the brain. We show that while retinal ganglion cells from embryonic day 6 (E6) chicks extend profuse neurites on laminin, those from Ell do not, although they retain the ability to extend neurites on astrocytes via a laminin-independent mechanism. This represents the first evidence that central nervous system neurones may undergo a change in their substrate requirements for neurite outgrowth as they mature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bray, D. Nature 244, 93–96 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Letourneau, P. C. Devl Biol. 44, 92–101 (1975).

    Article  CAS  Google Scholar 

  3. Timpl, R. H. et al. J. biol. Chem. 254, 9933–9937 (1979).

    CAS  Google Scholar 

  4. Baron von Evercooren et al. J. Neurosci. Res. 8, 179–193 (1982).

    Article  Google Scholar 

  5. Manthorpe, M. et al. J. Cell Biol. 97, 1882–1890 (1983).

    Article  CAS  Google Scholar 

  6. Rogers, S. L. et al. Devl Biol. 98, 212–220 (1983).

    Article  CAS  Google Scholar 

  7. Smallheiser, N. R., Crain, S. M. & Reid, L. M. Devl Brain Res. 12, 136–140 (1984).

    Article  Google Scholar 

  8. Calof, A. L. & Reichardt, L. F. Devl Biol. 106, 194–210 (1984).

    Article  CAS  Google Scholar 

  9. Bignami, A., Chi, N. H. & Dahl, D. Expl Neurol. 85, 226–236 (1984).

    Article  Google Scholar 

  10. Hopkins, J. M., Ford-Holevinski, T. S., McCoy, J. P. & Agranoff, B. W. J. Neurosci. 5, 3030–3038 (1985).

    Article  CAS  Google Scholar 

  11. Liesi, P. EMBO J. 4, 2505–2511 (1985).

    Article  CAS  Google Scholar 

  12. Kahn, A. J. Brain Res. 63, 285–290 (1973).

    Article  CAS  Google Scholar 

  13. Rager, G. H. Adv. Anat. Embryol. Cell Biol. 63, 1–92 (1980).

    Article  Google Scholar 

  14. Sinclair, C. M., Bartlett, P.F., Grieg, D. I. & Jeffrey, P. L. Brain Res. (in the press).

  15. Rostas, J. A. P., Shernan, A., Sinclair, C. M. & Jeffrey, P. L. Biochem. J. 213, 143–152 (1983).

    Article  CAS  Google Scholar 

  16. Beale, R. & Osborne, N. N. Neurochem. Int. 4, 587–595 (1982).

    Article  CAS  Google Scholar 

  17. Barnstable, C. J. & Drager, H. C. Neuroscience 11, 847–855 (1984).

    Article  CAS  Google Scholar 

  18. Perry, V. H., Morris, R. J. & Raisman, G. J. Neurocytol. 13, 809–824 (1984).

    Article  CAS  Google Scholar 

  19. Raff, M. C. et al. J. Neurosci. 3, 1289–1300 (1983).

    Article  CAS  Google Scholar 

  20. Lander, A. D., Fujii, D. K. & Reichardt, L. F. Proc. natn. Acad. Sci. U.S.A. 82, 2183–2187 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Davis, G. E., Manthorpe, M., Engvall, E. & Varon, S. J. Neurosci. 5, 2662–2671 (1985).

    Article  CAS  Google Scholar 

  22. Leifer, D., Lipton, S. A., Barnstable, C. J. & Masland, R. H. Science 224, 303–306 (1984).

    Article  ADS  CAS  Google Scholar 

  23. McCaffery, C. A., Raju, T. R. & Bennett, M. R. Devl Biol. 104, 441–448 (1984).

    Article  CAS  Google Scholar 

  24. So, K.-F. & Aquayo, A. J. Brain Res. 32, 349–354 (1985).

    Article  Google Scholar 

  25. Noble, M., Fok-Seang, J. & Cohen, J. J. Neurosci. 4, 1892–1903 (1984).

    Article  CAS  Google Scholar 

  26. Fallen, J. S. J. Cell Biol. 100, 198–207 (1985).

    Article  Google Scholar 

  27. Silver, J. & Sapiro, J. J. comp. Neural. 202, 521–538 (1981).

    Article  CAS  Google Scholar 

  28. Kryanek, S. & Goldberg, S. Devl Biol. 84, 41–50 (1981).

    Article  Google Scholar 

  29. Greve, J. M. & Gottlieb, D. L. J. cell. Biochem. 18, 221–230 (1982).

    Article  CAS  Google Scholar 

  30. Horwitz, A. et al. J. Cell Biol. 101, 2134–2144 (1985).

    Article  CAS  Google Scholar 

  31. Liesi, P., Dahl, D. & Vaheri, A. J. Cell Biol. 96, 920–924 (1983).

    Article  CAS  Google Scholar 

  32. Grummet, M., Hoffman, S. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 81, 267–271 (1984).

    Article  ADS  Google Scholar 

  33. Keilhauser, G., Faissner, A. & Schachner, M. Nature 316, 728–730 (1985).

    Article  ADS  Google Scholar 

  34. Adler, R., Jordan, J. & Hewitt, A. T. Devl Biol. 112, 100–114 (1985).

    Article  CAS  Google Scholar 

  35. Cohen, J. Neurosci. Lett. Suppl. 22, 36 (1985).

    Google Scholar 

  36. McLean, I. W. & Nakane, P. K. J. Histochem. Cytochem. 22, 1077–1083 (1984).

    Article  Google Scholar 

  37. Johnson, G. D. et al. J. immun. Meth. 55, 231–242 (1982).

    Article  CAS  Google Scholar 

  38. Lemmon, V. Devl Brain Res. 23, 111–120 (1985).

    Article  Google Scholar 

  39. Bottenstein, J. & Sato, G. H. Proc. natn. Acad. Sci. U.S.A. 76, 515–517 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, J., Burne, J., Winter, J. et al. Retinal ganglion cells lose response to laminin with maturation. Nature 322, 465–467 (1986). https://doi.org/10.1038/322465a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322465a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing