Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mouse locus at which transcription from both DNA strands produces mRNAs complementary at their 3′ ends

Abstract

The organization and large size of the mammalian cell genome allows spatial separation of different transcription units. In those cases where more than one species of messenger are synthesized from the same cellular DNA sequence, they have been found to be generated from transcription proceeding in the same direction. These mRNAs always share regions of homology and can differ from one another as a result of differential processing (splicing and/or polyadenylation) or alternative initiation1–14. In contrast, complementary mRNAs transcribed from opposite strands of the same cellular DNA sequence have not previously been observed. Here we have identified a region of mouse DNA at which processed mRNAs from two adjacent convergent transcription units overlap by 133 base pairs (bp) at their 3′-untranslated ends. One of the transcription units appears to encode a second mRNA which does not contain this overlapping region. This represents the first description of the natural occurrence of processed mammalian cell mRNAs transcribed from opposite strands of the same DNA sequence. The implications of these complementary regions in normal gene regulation are discussed in the context of the finding that the artificial introduction into cells of DNA constructs synthesizing anti-sense RNAs complementary to regions of mRNA transcribed from a chromosomal gene, can inhibit the gene's activity, presumably by the formation of double-stranded RNA15–19.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alt, F. W. et al. Cell 20, 293–301 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Early, P. et al. Cell 20, 313–319 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenfeld, M. G. et al. Nature 304, 129–135 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Medford, R. M., Nguyen, H. T., Destree, A. T., Summers, E. & Nadal-Ginard, B. Cell 38, 409–421 (1984).

    Article  CAS  PubMed  Google Scholar 

  5. Kornblihtt, A. R., Umezawa, K., Vibe-Pedersen, K. & Baralle, E. EMBO J. 4, 1755–1759 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Ferra, F. et al. Cell 43, 721–727 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Leonard, W. J. et al. Science 230, 633–639 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Setzer, D. R., McGrogan, M., Hunberg, J. H. & Schimke, R. T. Cell 22, 361–370 (1980).

    Article  CAS  PubMed  Google Scholar 

  9. Tosi, M., Young, R. A., Hagenbuchle, O. & Schibler, U. Nucleic Acids Res. 9, 2313–2323 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Setzer, D. R., McGrogan, M. & Schimke, T. J. biol. Chem. 257, 5143–5147 (1982).

    CAS  PubMed  Google Scholar 

  11. Parnes, J. R. & Robinson, R. R. Nature 302, 449–452 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sakakibara, M., Mukai, T., Yatsuki, H. & Hori, K. Nucleic Acids Res. 13, 5055–5069 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Milner, R. J. et al. Cell 42, 931–939 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Schibler, U., Hagenbuchle, O., Wellauer, P. K. & Pittet, A. C. Cell 33, 501–508 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Izant, J. G. & Weintraub, H. Cell 36, 1007–1015 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Izant, J. G. & Weintraub, H. Science 229, 345–352 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Melton, D. A. Proc. natn. Acad. Sci. U.S.A. 82, 144–148 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Harland, R. & Weintraub, H. J. Cell Biol. 101, 1094–1099 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Kim, S. K. & Wold, B. Cell 42, 129–138 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Fried, M. et al. Proc. natn. Acad. Sci. U.S.A. 80, 2117–2121 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Ford, M., Davies, B., Griffiths, M., Wilson, J. & Fried, M. Proc. natn. Acad. Sci. U.S.A. 82, 3370–3374 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Sasavage, N. L., Smith, M., Gillam, S., Woychik, R. O. & Rottman, F. M. Proc. natn. Acad. Sci. U.S.A. 79, 223–227 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Wiedemann, L. M. & Perry, R. P. Molec. Cell. Biol. 4, 2518–2528 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simonsen, C. C. & Levinson, A. D. Molec. Cell. Biol. 3, 2250–2258 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruley, H. E., Lania, L., Chaudry, F. & Fried, M. Nucleic Acids Res. 10, 4515–4524 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernstine, E. G., Hooper, M. L., Grandchamp, S. & Ephrussi, B. Proc. natn. Acad. Sci. U.S.A. 70, 3899–3903 (1973).

    Article  ADS  CAS  Google Scholar 

  27. Solter, D. & Knowles, B. Proc. natn. Acad. Sci. U.S.A. 75, 5565–5569 (1978).

    Article  ADS  CAS  Google Scholar 

  28. Tooze, J. (ed.) DNA Tumour Viruses 2nd edn (Cold Spring Harbor Laboratory, New York, 1981).

  29. Mizuno, T., Chou, M.-Y. & Inouye, M. Proc. natn. Acad. Sci. U.S.A. 81, 1966–1970 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Simons, R. W. & Kleckner, N. Cell 34, 683–691 (1983).

    Article  CAS  PubMed  Google Scholar 

  31. Tomizawa, T.-I., Itoh, T., Selzer, G. & Som, T. Proc. natn. Acad. Sci. U.S.A. 78, 1421–1425 (1981).

    Article  ADS  CAS  Google Scholar 

  32. Cesareni, M., Muesing, M. A. & Polisky, B. Proc. natn. Acad. Sci. U.S.A. 79, 6313–6317 (1982).

    Article  ADS  CAS  Google Scholar 

  33. Tomizawa, J.-I. & Itoh, T. Cell 31, 575–583 (1982).

    Article  CAS  PubMed  Google Scholar 

  34. Zaret, K. S. & Sherman, F. Cell 28, 563–573 (1982).

    Article  CAS  PubMed  Google Scholar 

  35. Birnstiel, M. L., Busslinger, M. & Strub, K. Cell 41, 349–359 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Dente, L., Cesareni, G. & Cortese, R. Nucleic Acids Res. 11, 1645–1655 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayday, A., Ruley, H. E. & Fried, M. J. Virol. 44, 67–77 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Maniatis, T., Fritsch, E. F. & Sambrook, J. in Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  39. Favaloro, J., Triesman, R. & Kamen, R. Meth. Enzym. 65, 718–749 (1980).

    Article  CAS  PubMed  Google Scholar 

  40. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Wickens, M. & Stephenson, P. Science 226, 1045–1051 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Taya, T. et al. EMBO J. 1, 953–958 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Woychik, R. P., Lyons, R. H., Post, L. & Rottman, F. M. Proc. natn. Acad. Sci. U.S.A. 81, 3944–3948 (1984).

    Article  ADS  CAS  Google Scholar 

  44. Gil, A. & Proudfoot, N. J. Nature 312, 473–474 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. McLauchlan, J., Gaffney, D., Whitton, J. L. & Clements, J. B. Nucleic Acids Res. 13, 1347–1368 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berget, S. M. Nature 309, 179–182 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Gubler, U. & Hoffman, B. J. Gene 25, 263–269 (1983).

    Article  CAS  PubMed  Google Scholar 

  48. Huynh, T. V., Young, R. A. & Davis, R. W. in DNA Cloning: a Practical Approach Vol. 1 (ed. Glover, D. M.) 49–78 (IRL, Oxford, 1985).

    Google Scholar 

  49. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  50. Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, T., Fried, M. A mouse locus at which transcription from both DNA strands produces mRNAs complementary at their 3′ ends. Nature 322, 275–279 (1986). https://doi.org/10.1038/322275a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322275a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing