Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells

Abstract

The importance of second-messenger systems in controlling the excitability of neurones and other cells, through modulation of voltage- and calcium-dependent ionic conductances, has become increasingly clear. Cyclic AMP1–3, acting via protein kinase A4–6, has been identified as the second messenger for several neurotran-smitters, and recent studies have suggested that activation of protein kinase C may have similar modulatory actions on neurones7–11. Calcium and potassium currents have so far been shown to be the major ionic conductances modified by kinase activation4–11. We now report that hippocampal pyramidal cells contain a previously undescribed voltage-dependent chloride current which is active at resting potential and is turned off either by membrane depolarization or by activation of protein kinase C by phorbol esters. We propose that this current may reside predominantly in the cell's dendritic membrane and thereby may regulate dendritic excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cachelin, A. B., dePeyer, J. E., Kokubun, S. & Reuter, H. Nature 304, 462–464 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Madison, D. V. & Nicoll, R. A. J. Physiol., Land. 372, 245–259 (1986).

    Article  CAS  Google Scholar 

  3. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Nature 299, 413–417 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Ewald, D. A., Williams, A. & Levitan, I. B. Nature 315, 503–506 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Osterrider, W. et al. Nature 298, 576–578 (1982).

    Article  ADS  Google Scholar 

  6. Shuster, M. J., Camardo, J. S., Siegelbaum, S. A. & Kandel, E. R. Nature 313, 392–395 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Baraban, J. M., Snyder, S. H. & Alger, B. E. Proc. natn. Acad. Sci. U.S.A. 82, 2538–2542 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Malenka, R. C., Madison, D. V., Andrade, R. & Nicoll, R. A. J. Neurosci. 6, 475–480 (1986).

    Article  CAS  Google Scholar 

  9. DeReimer, S. A., Strong, J. A., Albert, K. A., Greengard, P. & Kaczmarek, L. K. Nature 313, 313–316 (1985).

    Article  ADS  Google Scholar 

  10. Rane, S. G. & Dunlap, K. Proc. natn. Acad. Sci. U.S.A. 83, 184–188 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Strong, J. A., Fox, A. P., Tsien, R. W. & Kaczmarek, L. K. Biophys. J. 49, 430a (1986).

    Google Scholar 

  12. Halliwell, J. V. & Adams, P. R. Brain Res. 250, 71–92 (1982).

    Article  CAS  Google Scholar 

  13. Collingridge, G. L., Gage, P. W. & Robertson, B. J. Physiol., Lond. 356, 551–564 (1984).

    Article  CAS  Google Scholar 

  14. White, M. W. & Miller, C. J. biol Chem. 254, 10161–10166 (1979).

    CAS  PubMed  Google Scholar 

  15. Chesnoy-Marchais, D. Nature 299, 357–361 (1982).

    Article  ADS  Google Scholar 

  16. Chesnoy-Marchais, D. J. Physiol., Lond. 342, 277–308 (1983).

    Article  CAS  Google Scholar 

  17. Selyanko, A. A. J. Physiol., Lond. 350, 49P (1984).

    Google Scholar 

  18. Castagna, M. et al. J. biol. Chem. 257, 7847–7851 (1982).

    CAS  Google Scholar 

  19. Madison, D. V. & Nicoll, R. A. J. Physiol., Lond. 372, 221–244 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madison, D., Malenka, R. & Nicoll, R. Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature 321, 695–697 (1986). https://doi.org/10.1038/321695a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321695a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing