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Towards understanding snowflakes 
The reasons why the microscopic anisotropy of molecules in crystals is reflected in the shapes of the 
macroscopic structures which they form have been obscure. Now there is some progress. 
THE celebrated symmetrical hexagonal 
dendritic shapes of snowflakes are so 
familiar that they should long ago have 
been explained; that might be everybody's 
reasonable expectation. But the physics of 
the problem is not nearly as simple as it 
seems. The essential difficulty is to ac
count for the way in which anisotropy on 
the scale of molecules is reflected in the 
shapes of macroscopic crystals. 

The problem is not especially difficult 
with crystals that form a reasonably com
pact mass. The crystals grown by the 
multitude in kindergarten classrooms by 
suspending a crystal seed by a piece of 
thread in a supersaturated solution form 
in regular shapes for energetic reasons, 
because that is how best to minimize the 
free energy of the system; provided that 
the access of extra molecules (or ions) is 
equally easy from all directions, which re
quires that in practice the crystal seed 
should not be too close to the side of the 
jar in which it is suspended, extra ele
ments will be added in such a way as to 
form sheets parallel to the planes in the 
basic unit cell. If access is not independent 
of direction, the result will be a misshapen 
crystal, but the underlying symmetry will 
remain at the level of the unit cell. 

Dendritic structures such as snowflakes 
are more difficult because they combine 
what often seems a startling gross sym
metry with a disconcerting disorderliness 
on the scale of the dendrites. The simple
minded rules of crystal growth seem not to 
apply. The article by Johann Nittmann 
and H. Eugene Stanley (this issue, p.663) 
goes a long way to explain why some re
cent attempts at a solution have not suc
ceeded fully. More than that, it embodies 
the essence of an explanation of the 
growth of dendritic crystals. 

Broadly speaking, there have been two 
complementary approaches to the prob
lem, the first due to J.S. Langer (reviewed 
by Langer in Rev. mod. Phys. 82, 1; 1980), 
who has dealt with the growth of dendritic 
tips by the diffusion of new material 
through the surrounding medium. The 
arguments apply as well to crystallization 
from a solution as to condensation from a 
vapour phase. The rate at which material 
is added to a particular point on a growing 
surface is determined by the local geo
metry in the sense that protuberances are 
more likely than re-entry points to acquire 
material by diffusion. There may be cir
cumstances in which growth is limited by 
the need that latent heat should be con-

ducted away from the surface. The fact 
that growth depletes the local environ
ment of the uncondensed phase of mat
erial means that growth will also be limit
ed by the rate of diffusion. The usual 
upshot is a set of differential equations 
that cannot usually be solved exactly, but 
can be used to define the conditions under 
which a dendritic tip will continue to 
elongate or, alternatively, split. 

The frustrations of this approach have 
stimulated the more recent phase of com
puter simulation, of which T.A. Witten 
was the first exponent (see Witten, T.A. 
& Sander, L.M. Phys. Rev. Lett. 47, 1400; 
1981). In the simplest model of diffusion
limited aggregation, as it is called, extra 
elements of the material of which a crystal 
is being constructed are supposed to be 
added to the system at random points of 
some distant boundary and are allowed to 
migrate by means of a random walk along 
the links of some underlying lattice. If the 
diffusing element should reach a point on 
the lattice which is an immediate neigh
bour of the growing aggregate, it may be 
supposed captured, but there are a host of 
ways of defining the aggregation rules, 
most of which appear to have been tried in 
the past few years. 

The virtue of these simulations is that 
they yield patterns which indeed resemble 
those of real aggregates. In particular, 
they show that aggregates whose growth is 
limited by diffusion are fractal structures; 
in two dimensions, for example, the num
ber of elements in an aggregate is not pro
portional to the square of its dimensions 
but to some lesser power of them, called 
the fractal dimension. At some cost in 
computer time, the simulations can be 
(and have been) carried out in any number 
of dimensions. 

What Nittmann and Stanley have done 
is to combine these two approaches or, 
more accurately, to carry out lattice-based 
simulations of aggregation in a way that 
can be made to correspond to equations of 
the kind that Langer (and, now, many 
others) formulated. They have overcome 
the persistently annoying feature of simu
lations, the difficulty of telling the mean
ing underlying the patterns produced, by 
producing a series of patterns correspond
ing to the variation of some physical para
meter over a known range. Their aggre
gation rules are among the simplest there 
could be, consisting simply of the require
ments that new elements are added at 
random to the periphery of a growing , 

aggregate, but that their assignment to the 
sites available is biased to reflect what the 
macroscopic equations suggest will be the 
rate of growth there. 

One result of consequence to emerge 
arises from the fact that the simulation 
model can deal only with the addition of 
discrete elements to the aggregate. There 
are, as a consequence, departures from 
the macroscopic prediction of the regular 
outward extension of a regular envelope 
of the growing aggregate, which is fairly 
described by the authors as noise. The 
essence of this part of the result is that 
outward extensions of the surface are 
quickly smoothed out by the later addition 
of material, but that inward depressions 
are less readily filled in, but may instead 
persist as the apices of what are to become 
fiords in the pattern as the aggregate 
grows. 

The simulations (see p.664) show that 
the patterns are typically broken up into a 
number of radially extended tongues of 
substance separated by lengthening 
fiords, while the tips of new fiords re
peatedly form at the outer surfaces of the 
extending tongues. Given that the aggre
gation rules correspond to the penetration 
of one liquid into another with which it is 
immiscible, it is pleasing but not surprising 
that the fractal patterns formed resemble 
those found in such experiments. The 
circumstances correspond to those of 
practical importance in which oil com
panies pump water down into the oil wells 
so as to displace crude oil from its reser
voirs. 

But the most remarkable result of these 
simulations stems from the apparently 
successful attempt to allow for the aniso
tropy of the real world, which depends on 
the assumption that not all sites on the 
surface of a growing aggregate are equally 
suitable energetically. The criteria used in 
extending the aggregation rules are strict
ly microscopic; they depend only on the 
orientation - some sites are more likely 
to be occupied than their immediate 
neighbours. 

One outcome is the pattern of an aggre
gate which is virtually indistinguishable 
from a fairy-tale snowflake, a feathery col
lection of dendrites which is plainly hex
agonally symmetric overall, but whose 
smaller-scale structure is far from sym
metric, which is the case with real snow
flakes. That looks a convincing demon
stration that the snowflake problem is on 
the way to solution. John Maddox 
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