Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbonate recrystallization in basal sediments: evidence for convective fluid flow on a ridge flank

Abstract

In many Deep Sea Drilling Project (DSDP) drill holes, chalks and/or limestones and even dolomites overlie oceanic basement rocks. These occurrences have often been interpreted as the result of increased calcium carbonate dissolution and reprecipitation as cement and overgrowths (recrystallization) at higher prevailing temperatures, either near an oceanic ridge system or at greater burial depths (burial diagnesis). We report here detailed chemical and isotopic analyses of carbonate sediments recovered from a drill hole on the western flank of the East Pacific Rise during Leg 92 of DSDP. This hole was drilled on 4.6-Myr old oceanic crust and recovered chalks directly overlying oceanic basement at a depth as shallow as 8 m below the sediment/water interface. Oceanic basement was not reached in this hole because of the hardness of deeper chalks, or, more likely, limestones. The chemical and isotopical evidence, detailed below, shows that considerable calcite recrystallization did occur in an aqueous medium similar to normal seawater and at relatively low temperature. This suggests that the observed recrystallization of calcareous ooze to chalk and limestone took place not as a result of burial diagenesis at higher temperatures, but as a result of extensive advective pore water flow through the sediments, which would allow recrystallization of calcium carbonate to take place. This process was, and apparently still is, widespread in the south-east Pacific Ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kastner, M., Hu, J.-Y. & Gieskes, J. M. Init. Rep. DSDP 92 (in the press).

  2. Quilty, P. G. et al. Init. Rep. DSDP 34, 779–794 (1976).

    Google Scholar 

  3. Bass, M. N. Init. Rep. DSDP 34, 611–624 (1976).

    Google Scholar 

  4. Rea, D. K. & Leinen, M. Init. Rep. DSDP 92 (in the press).

  5. Hobart, M. Init. Rep. DSDP 92 (in the press).

  6. Sclater, J. G., Anderson, R. N. & Bell, M. L. J. geophys. Res. 76, 7888–7915 (1971).

    Article  ADS  Google Scholar 

  7. Geiskes, J. M. & Boulegue, J. Init. Rep. DSDP 92 (in the press).

  8. Bender, M. L. et al. Earth planet Sci. Lett. 76, 71–83 (1985/1986).

    Article  ADS  CAS  Google Scholar 

  9. Knuttel, S. & Romine, K. Init. Rep. DSDP 92 (in the press).

  10. Berger, W. H. & Winterer, E. L. Int. Ass. Sedim. Spec. Publ. 1, 11–48 (1974).

    Google Scholar 

  11. van Andel, Tj. H., Heath, G. R. & Moore, T. C. Geol. Soc. Am. Mem. 143 (1975).

  12. Broecker, W. S. & Broecker, S. Soc. Econ. Paleont. Miner. Spec. Publ. 20, 44–57 (1974).

    CAS  Google Scholar 

  13. Berger, W. H., Adelseck, C. G. & Mayer, L. A. J. geophys. Res. 81, 2617–2627 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Romine, K. Init. Rep. DSDP 92 (in the press).

  15. Schlanger, S. O. & Douglas, R. G. Int. Ass. Sedim. Spec. Publ. 1, 117–148 (1974)

    Google Scholar 

  16. Baker, P. A., Gieskes, J. M. & Elderfield, H. J. Sedim. Petrol. 52, 71–82 (1982).

    CAS  Google Scholar 

  17. Killingley, J. S. Nature 301, 594–597 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Garrison, R. E., Mein, J. R. & Anderson, T. F. Sedimentology 20, 399–410 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Katz, A., Sass, E., Starinsky, A. & Holland, H. D. Geochim. cosmochim. Acta 36, 481–496 (1972).

    Article  ADS  CAS  Google Scholar 

  20. Douglas, R. G. & Savin, S. M. Init. Rep. DSDP 17, 591–605 (1973).

    Google Scholar 

  21. Douglas, R. G. & Savin, S. M. Init. Rep. DSDP 32, 509–520 (1975).

    CAS  Google Scholar 

  22. Savin, S. & Yeh, H. W. in The Sea Vol. 7, (ed. Emiliani, C.) 1521–1554 (Wiley-Interscience) (1981).

    Google Scholar 

  23. Berger, W. H., Vincent, E. & Thierstein, H. R. Soc. Econ. Paleont. Miner. Spec. Publ. 32, 489–304 (1981).

    Google Scholar 

  24. O'Neil, J. R., Clayton, R. N. & Mayeda, T. K. J. chem. Phys. 51, 5547–5558 (1969).

    Article  ADS  CAS  Google Scholar 

  25. Kroopnick, P., Weiss, R. F. & Craig, H. Earth planet. Sci. Lett. 76, 103–110 (1972).

    Article  ADS  Google Scholar 

  26. Emrich, K., Ekhalt, D. H. & Vogel, J. C. Earth planet. Sci. Lett. 8, 363–371 (1970).

    Article  ADS  CAS  Google Scholar 

  27. Turner, J. V. Geochim. cosmochim. Acta 46, 1183–1191 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastner, M., Gieskes, J. & Hu, JY. Carbonate recrystallization in basal sediments: evidence for convective fluid flow on a ridge flank. Nature 321, 158–161 (1986). https://doi.org/10.1038/321158a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321158a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing