Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subsurface charge accumulation imaging of a quantum Hall liquid

An Erratum to this article was published on 15 October 1998

Abstract

The unusual properties of two-dimensional electron systems that give rise to the quantum Hall effect have prompted the development of new microscopic models for electrical conduction1,2,3,4,5,6. The bulk properties of the quantum Hall effect have also been studied experimentally using a variety of probes including transport7,8, photoluminescence9,10, magnetization11 and capacitance12,13 measurements. However, the fact that two-dimensional electron systems typically exist some distance (about 1,000 Å) beneath the surface of the host semiconductor has presented an important obstacle to more direct measurements of microscopic electronic structure in the quantum Hall regime. Here we introduce a cryogenic scanning-probe technique—‘subsurface charge accumulation’ imaging—that permits very high resolution examination of systems of mobile electrons inside materials. We use this technique to image directly the nanometre-scale electronic structures that exist in the quantum Hall regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of the sample and measurement configuration.
Figure 2: In-phase (Qin) SCA images of a region of perturbed electron density in the 2DES.
Figure 3: Sequence of five in-phase SCA images for an unperturbed region of the 2DES at v ≈ 4.05.
Figure 4: Qin and Qout images at 2.

Similar content being viewed by others

References

  1. Prange, R. E. & Girvin, S. M. (eds) The Quantum Hall Effect 2nd edn (Springer, New York, (1990).

    Book  Google Scholar 

  2. Das Sarma, S. & Pinczuk, A. (eds) Perspectives in Quantum Hall Effects (Wiley Inter-Science, New York, (1997)).

    Google Scholar 

  3. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5634 (1981).

    Article  ADS  Google Scholar 

  4. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2188 (1982).

    Article  ADS  Google Scholar 

  5. Iordansky, S. V. On the conductivity of two dimensional electrons in a strong magnetic field. Solid State Commun. 43, 1–3 (1982).

    Article  ADS  Google Scholar 

  6. Chalker, J. T. The quantum Hall effect: a sum rule. Surf. Sci. 142, 182–185 (1984).

    Article  ADS  Google Scholar 

  7. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Zero-resistance state of two-dimensional electrons in a quantizing magnetic field. Phys. Rev. B 25, 1405–1407 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Goldberg, B. B. et al. Optical investigations of the integer and fractional quantum Hall effects: energy plateaus, intensity minima, and line splitting in band-gap emission. Phys. Rev. Lett. 65, 641–644 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Kukushkin, I. V. et al. Evidence of the triangular latice of crystallized electrons from time resolved luminescence. Phys. Rev. Lett. 72, 3594–3597 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Eisenstein, J. P. et al. Density of states and de Haas-van Alphen effect in two-dimensional electron systems. Phys. Rev. Lett. 55, 875–878 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Ashoori, R. C. & Silsbee, R. H. The Landau level density of states as a function of Fermi energy in the two-dimensional electron gas. Solid State Commun. 81, 821–825 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Smith, T. P., Goldberg, B. B., Stiles, P. J. & Heiblum, M. Direct measurement of the density of states of a two-dimensional electron gas. Phys. Rev. B 32, 2696–2699 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Eriksson, M. A., Beck, R. G., Topinka, M. & Katine, J. A. Cryogenic scanning probe characterization of semiconductor nanostructures. Appl. Phys. Lett. 69, 671–673 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Yoo, M. J. et al. Scanning single-electron transistor microscopy: imaging individual charges. Science 276, 579–582 (1997).

    Article  CAS  Google Scholar 

  16. Williams, C. C., Slinkman, J. & Hough, W. P. Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy. Appl. Phys. Lett. 55, 1662–1664 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Kochanski, G. P. Nonlinear alternating-current tunneling microscopy. Phys. Rev. Lett. 62, 2285–2288 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Stranick, S. J. & Weiss, P. S. Atunable microwave frequency alternating current scanning tunneling microscope. Rev. Sci. Instrum. 65, 918–921 (1994).

    Article  ADS  Google Scholar 

  19. Bourgoin, J.-P., Johnson, M. B. & Michel, B. Semiconductor characterization with the scanning surface harmonic microscope. Appl. Phys. Lett. 65, 2045–2047 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Shockley, W., Queisser, H. J. & Hooper, W. W. Charges on oxidized silicon surfaces. Phys. Rev. Lett. 11, 489–490 (1963).

    Article  ADS  CAS  Google Scholar 

  21. Efros, A. L. Non-linear screening and the background density of states of 2DEG in magnetic field. Solid State Commun. 67, 1019–1022 (1988).

    Article  ADS  Google Scholar 

  22. Chklovskii, D. B. & Lee, P. A. Transport properties between quantum Hall plateaus. Phys. Rev. B 48, 18060–18078 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Trugman, S. A. Localization, percolation, and the quantum Hall effect. Phys. Rev. B 27, 7539–7546 (1983).

    Article  ADS  Google Scholar 

  24. Pruisken, A. M. M. Universal singularities in the integral quantum Hall effect. Phys. Rev. Lett. 61, 1297–1300 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Huckenstein, B. Scaling theory of the integer quantum Hall effect. Rev. Mod. Phys. 67, 357–396 (1994).

    Article  ADS  Google Scholar 

  26. McEuen, P. L. et al. Self-consistent addition spectrum of a Coulomb island in the quantum Hall regime. Phys. Rev. B 45, 11419–11422 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Chamon, C. d. C. & Wen, X. G. Sharp and smooth boundaries of quantum Hall liquids. Phys. Rev. B 49, 8277–8241 (1994).

    Article  ADS  Google Scholar 

  28. MacDonald, A. H., Yang, S. R. E. & Johnson, M. D. Quantum dots in strong magnetic fields: stability criteria for the maximum density droplet. Aust. J. Phys. 46, 345–358 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Koulakov, A. A., Fogler, M. M. & Shklovskii, B. I. Charge density wave in two-dimensional electron liquid in magnetic field. Phys. Rev. Lett. 76, 499–502 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Ashoori, R. C. et al. Single-electron capacitance spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68, 3088–3091 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Cohen, E. Atmaca, M. Brodsky, H. B. Chan, A. Folch, S. Heemeyer, A.Shytov, D. Silevitch and N. B. Zhitenev for technical help, and B. I. Halperin, H. F. Hess, R. B. Laughlin, P. A. Lee and B. I. Shklovskii for discussions. This work was supported by the Office of Naval Research, the Packard Foundation, JSEP, and the National Science Foundation DMR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Ashoori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tessmer, S., Glicofridis, P., Ashoori, R. et al. Subsurface charge accumulation imaging of a quantum Hall liquid. Nature 392, 51–54 (1998). https://doi.org/10.1038/32112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing