Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metasomatic mineral titanate complexing in the upper mantle

Abstract

The extent and expression of metasomatism in the upper mantle are contentious issues1,2, although the process has gained widespread acceptance to account for the subsequent enrichment of previously depleted lithosphere3,4. Uncertainties exist in the origin and precise compositions of the fluids involved, as well as in the total inventory of introduced metasomatic elements (particularly silicate-incompatible Ti, Zr, Nb, REE (rare-earth elements), Ba, Sr, Rb, K and Na). Metasomatism is readily identified by the presence of phlogopite, and in the most advanced stages by K-richterite4. In K-richterite-bearing harzburgites, these characteristic minerals are accompanied by rutile, armalcolite and lindsleyite–mathiasite (LIMA) solid solution members5 of the crichtonite mineral series6. The LIMA series is one upper mantle repository for silicate-incompatible elements, but the series is also specifically enriched in chromium (12–18 wt% Cr2O3). While it has been assumed5,7 that Cr is immobilized in the depleted lithosphere as a restite element, either in residual garnet, pyroxene, or in chromian spinel, there has been no direct evidence for the source of Cr in LIMA. We show here that LIMA solid-solution members are derived from Cr-spinel through interaction with metasomatic fluids by formation of a magnetoplumbite mineral with up to 14 wt % BaO, and which is inferred to contain Ce4+. Fluid compositions are heterogeneous and an increase in the variety of repositories for silicate-incompatible trace elements is demonstrated in the subcontinental lithosphere at depths <100 km.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bailey, D. K. Nature 296, 525–530 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Dawson, J. B. in Developments of Petrology IIB, Kimberlites: The Mantle and Crust-Mantle Relationships Vol. 2, 289–294 (Elsevier, Oxford, 1984).

    Book  Google Scholar 

  3. Erlank, A. J., Allsopp, H. L., Duncan, A. R. & Bristow, J. W. Phil. Trans. R. Soc. Lond. A297, 295–307 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Erlank, A. J., Allsopp, H. L., Hawkesworth, C. J. & Menzies, M. A. Terra Cognita 2, 261–263 (1982).

    Google Scholar 

  5. Haggerty, S. E., Smyth, J. R., Erlank, A. J., Rickard, R. S. & Danchin, R. V. Am. Miner. 68, 494–505 (1983).

    CAS  Google Scholar 

  6. Grey, I. E., Lloyd, D. J. & White, J. S. Jr Am. Miner. 61, 1203–1212 (1976).

    CAS  Google Scholar 

  7. Jones, A. P., Smith, J. V. & Dawson, J. B. J. Geol. 90, 435–453 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Jones, A. P. & Ekambaram, V. Am. Miner. 70, 414–418 (1985).

    CAS  Google Scholar 

  9. Mitchell, R. H. J. Geol. 81, 301–314 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Haggerty, S. E. in Oxide Minerals, Reviews of Mineralogy Vol. 3 (ed. Rumble, D. III) 101–300 (American Mineralogical Society, 1976).

    Google Scholar 

  11. Wyatt, B. A. in The Mantle Sample: Inclusions in Kimberlite and Other Volcanics Vol. 1 (eds Boyd, F. R. & Meyer, H. O. A.) 257–264 (American Geophysical Union, Washington DC, 1979).

    Book  Google Scholar 

  12. Haggerty, S. E. Geochim. cosmochim. Acta 47, 1833–1854 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Townes, W. D., Fang, J. H. & Perrotta, A. J. Z. Kristallogr. 125, 437–449 (1967).

    Article  CAS  Google Scholar 

  14. Adelskold, V. Ark. Kemi Miner. Geol. Ser. A12, 1–9 (1938).

    Google Scholar 

  15. Watson, E. B. Contr. Miner. Petrol. 70, 407–419 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Dong, Z., Jianxiong, Z., Ol, L. & Peng, Z. Kexue Tongbao (Bul. Sci.) 15, 932–936 (Foreign language edn 29, 920–923; 1983).

    Google Scholar 

  17. Haggerty, S. E. & Tompkins, L. A. Nature 303, 295–300 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Podpora, C. & Lindsley, D. H. Eos 65, 293 (1984).

    Google Scholar 

  19. Kramers, J. D., Roddick, J. C. M. & Dawson, J. B. Earth planet. Sci. Lett. 65, 90–106 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Hawkesworth, C. J., Erlank, A. J., Marsh, J. S., Menzies, M. A. & van Calsteren, P. in Continental Basalts and Mantle Xenoliths, 111–138 (Shiva, Cheshire, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haggerty, S., Erlank, A. & Grey, I. Metasomatic mineral titanate complexing in the upper mantle. Nature 319, 761–763 (1986). https://doi.org/10.1038/319761a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319761a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing