Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots

Abstract

Geochemical, stratigraphic and palaeolatitudinal data from deep boreholes drilled through Pacific guyots—flat-topped seamounts—help to explain the drowning of these Cretaceous shallow-water carbonate platforms that once thrived through the accumulation of biogenic and inorganic calcium carbonate sediment in mid-oceanic regions. The platforms drowned sequentially over a 60-million-year interval while they were being transported northward by Pacific plate motion through a narrow equatorial zone (0–10° S). Such platforms were apparently resistant to the effects of Cretaceous oceanic anoxic events. Although the mechanism responsible for drowning remains unknown, the tropics have not always been the refuge for atolls that they are today.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the Pacific Ocean showing the present location of the seven guyots (bold type) drilled during ODP Legs 143 and 144.
Figure 2: Stable carbon- and oxygen-isotope data.
Figure 3: Sr-isotope (87Sr/86Sr) stratigraphies for the Cretaceous carbonate platforms of Resolution, Allison, ‘MIT’ and Takuyo-Daisan guyots. Stratigraphy for Resolution guyot is modified from original interpretation30.
Figure 4: The timing and location of platform drowning.

Similar content being viewed by others

References

  1. Darwin, C. The Structure and Distribution of Coral Reefs (Smith, Eder & Co., London, 1842).

    Google Scholar 

  2. Hess, H. H. Drowned ancient islands of the Pacific basin. Am. J. Sci. 244, 772–791 (1946).

    Article  ADS  Google Scholar 

  3. Wilson, J. T. Evidence from islands on the spreading of ocean floors. Nature 197, 536–538 ( 1963).

    Article  ADS  Google Scholar 

  4. Hamilton, E. L. Sunken islands of the Mid-Pacific mountains. Mem. Geol. Soc. Am. 64, ((1956).

  5. Menard, H. W. & Ladd, H. S. Oceanic islands, seamounts, guyots and atolls. The Sea 3, 365– 385 (1963).

    Google Scholar 

  6. Schlanger, S. O., Jenkyns, H. C. & Premoli Silva, I. Volcanism and vertical tectonics in the Pacific basin related to the global Cretaceous transgressions. Earth Planet. Sci. Lett. 52, 435–449 ( 1981).

    Article  ADS  Google Scholar 

  7. Barron, E. J. Awarm, equable Cretaceous: the nature of the problem. Earth Sci. Rev. 19, 305–338 ( 1983).

    Article  ADS  Google Scholar 

  8. Larson, R. L. Latest pulse of Earth: Evidence for a mid-Cretaceous superplume. Geology 19, 547–550 ( 1991).

    Article  ADS  Google Scholar 

  9. Schlager, W. The paradox of drowned reefs and carbonate platforms. Bull. Geol. Soc. Am. 92, 197–211 ( 1981).

    Article  Google Scholar 

  10. Schlager, W., Marsal, D., van der Geest, P. A. G., Sprenger, A. & Fouke, B. W. Platform drowning, scaling of sedimentation rates and environmental change. Soc. Econ. Paleont. Mineral. Congr. Sed. Geol. 1, 110 (1995).

    Google Scholar 

  11. Arthur, M. A., Jenkyns, H. C., Brumsack, H.-J. & Schlanger, S. O. in Cretaceous Resources, Events and Rhythms (eds Ginsburg, R. N. & Beaudoin, B.) 75–119 (NATO ISI Ser. 304, Kluwer, Dordrecht, 1990).

    Google Scholar 

  12. Hallock, P. & Schlager, W. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–398 (1986).

    Article  ADS  Google Scholar 

  13. Vogt, P. R. Volcanogenic upwelling of anoxic, nutrient-rich water: a possible factor in carbonate-bank/reef demise and benthic faunal extinctions? Bull. Geol. Soc. Am. 101, 1225–1245 (1989).

    Article  CAS  Google Scholar 

  14. Philip, J. M. & Airaud-Crumière, C. The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: a global control. Coral Reefs 10, 115– 125 (1991).

    Article  ADS  Google Scholar 

  15. Rougerie, F. & Fagerstrom, J. A. Cretaceous history of Pacific Basin guyots reefs: a reappraisal based on geothermal endo-upwelling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 112, 239– 260 (1994).

    Article  Google Scholar 

  16. Winterer, E. L., van Waasbergen, R., Mammerickx, J. & Stuart, S. Karst morphology and diagenesis of the top of Albian limestone platforms, mid-Pacific Mountains. Proc. ODP B Sci. Res. 143, 433–470 (1993).

    Google Scholar 

  17. Winterer, E. L. & Sager, W. W. Synthesis of drilling results from the mid-Pacific Mountains: Regional context and implications. Proc. ODP B Sci. Res. 143, 497– 535 (1993).

    Google Scholar 

  18. Winterer, E. L. & Metzler, C. V. Origin and subsidence of guyots in Mid-Pacific mountains. J. Geophys. Res. 89, 9969–9979 ( 1984).

    Article  ADS  Google Scholar 

  19. Larson, R. L., Erba, E., Nakanishi, M., Bergersen, D. D. & Lincoln, J. M. Stratigraphic, vertical subsidence and paleolatitudinal histories of Leg 144 Guyots. Proc. ODP B Sci. Res. 144, 915–933 (1995).

    Google Scholar 

  20. Johnson, C. C. et al. Middle Cretaceous reef collapse linked to ocean heat transport. Geology 24, 376–380 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Skelton, P. W., Donovan, S. K. & Johnson, C. C. Middle Cretaceous reef collapse linked to ocean heat transport: Comment and Reply. Geology 25, 477–479 (1997).

    Article  ADS  Google Scholar 

  22. Lonsdale, P., Normark, W. R. & Neuman, W. A. Sedimentation and erosion on Horizon Guyot. Bull. Geol. Soc. Am. 83, 289–315 (1972).

    Article  Google Scholar 

  23. Saller, A. H. & Koepnick, R. B. Eocene to early Miocene growth of Enewetak Atoll: Insight from strontium-isotope data. Bull. Geol. Soc. Am. 102, 381–390 ( 1990).

    Article  Google Scholar 

  24. Land, L. A., Paull, C. K. & Hobson, B. Genesis of a submarine sinkhole without subaerial exposure: Straits of Florida. Geology 23, 949– 951 (1995).

    Article  ADS  Google Scholar 

  25. Melim, L. A., Swart, P. K. & Maliva, R. G. Meteoric-like fabrics forming in marine waters; implications for the use of petrography to identify diagenetic environments. Geology 23, 755–758 ( 1995).

    Article  ADS  Google Scholar 

  26. Erba, E. et al. Synthesis of stratigraphies from shallow-water sequences at Sites 872 through 879 in the western Pacific Ocean (Leg 144). Proc. ODP B Sci. Res. 144, 873–885 (1995).

    Google Scholar 

  27. Ludwig, K. R., Halley, R. B., Simmons, K. R. & Petermann, Z. E. Strontium-isotope stratigraphy of Enewetak Atoll. Geology 16, 173–177 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Quinn, T. M., Lohmann, K. C. & Halliday, A. N. Sr isotopic variations in shallow water carbonate sequences: stratigraphic, chronostratigraphic, and eustatic implications of the record at Enewetak Atoll. Paleoceanography 6, 371–385 (1991).

    Article  ADS  Google Scholar 

  29. Aharon, P., Goldstein, S. L., Wheeler, C. W. & Jacobson, G. Sea-level events in the South Pacific linked with the Messinian salinity crisis. Geology 21, 771–775 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Jenkyns, H. C., Paull, C. K., Cummins, D. & Fullagar, P. D. Strontium-isotope stratigraphy of Lower Cretaceous atoll carbonates in the Mid-Pacific Mountains. Proc. ODP B Sci. Res. 143, 99–104 (1995).

    CAS  Google Scholar 

  31. Wilson, P. A., Opdyke, B. N. & Elderfield, H. E. Strontium isotope geochemistry of carbonates from Pacific guyots. Proc. ODP B Sci. Res. 144, 447–457 (1995).

    CAS  Google Scholar 

  32. Wyatt, J. L., Quinn, T. M. & Davies, G. R. Petrology and geochemistry of limestones at Limalok and Wodejebato Guyots (Sites 871 and 874), Republic of the Marshall Islands. Proc. ODP B Sci. Res. 144, 429– 437 (1995).

    CAS  Google Scholar 

  33. McArthur, J. M., Thirlwall, M. F., Chen, M., Gale, A. S. & Kennedy, W. J. Strontium isotope stratigraphy in the Late Cretaceous: numerical calibration of the Sr isotope curve and intercontinental correlation for the Campanian. Paleoceanography 8, 859–873 ( 1993).

    Article  ADS  Google Scholar 

  34. Jones, C. E., Jenkyns, H. C., Coe, A. L. & Hesselbo, S. P. Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochim. Cosmochim. Acta. 58, 3061– 3074 (1994).

    Article  ADS  CAS  Google Scholar 

  35. Bralower, T. J., Fullagar, P. D., Paull, C. K., Dwyer, G. S. & Leckie, R. M. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Bull. Geol. Soc. Am. 109, 1421–1442 (1997).

    Article  CAS  Google Scholar 

  36. Wilson, P. A. & Opdyke, B. N. Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology 24, 555– 558 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Wilson, P. A. & Dickson, J. A. D. Radiaxial calcite: Alteration product of and petrographic proxy for magnesian calcite marine cement. Geology 24, 945–948 ( 1996).

    Article  ADS  CAS  Google Scholar 

  38. Gross, M. G. & Tracey, J. I. Oxygen and carbon isotopic composition of limestones and dolomites, Bikini and Eniwetok Atolls. Science 151, 1082–1084 ( 1966).

    Article  ADS  CAS  Google Scholar 

  39. Aharon, P. Analysis of the anomalous 18O/16O and D/H isotope ratios in tropical rainfall over the western Pacific Ocean. Eos 64, 106 (1983).

    Google Scholar 

  40. Saller, A. H. & Moore, C. H. Geochemistry of meteoric calcite cements in some Pleistocene limestones. Sedimentology 38, 601–621 (1991).

    Article  ADS  CAS  Google Scholar 

  41. Douglas, R. G. & Savin, S. M. Oxygen and carbon isotope analyses of Cretaceous and Tertiary foraminifera from the central North Pacific. Init. Rep. DSDP 17, 591– 605 (1973).

    Google Scholar 

  42. Gradstein, F. M. et al. AMesozoic time scale. J. Geophys. Res. 99, 24051–24074 (1994).

    Article  ADS  Google Scholar 

  43. Arnaud Vanneau, A. & Premoli Silva, I. Biostratigraphy and systematic description of benthic foraminifers from mid-Cretaceous shallow-water carbonate platforms at Sites 878 and 879 (MIT and Takuyo-Daisan Guyots). Proc. ODP B Sci. Res. 144, 199–214 (1995).

    Google Scholar 

  44. Tarduno, J. A. & Gee, J. Large-scale motion between Pacific and Atlantic hotspots. Nature 378, 477–480 (1995).

    Article  ADS  CAS  Google Scholar 

  45. Sager, W. W. & Pringle, M. S. Mid-cretaceous to early Tertiary apparent polar wander path of the Pacific Plate. J. Geophys. Res. 93, 11753–11771 ( 1988).

    Article  ADS  Google Scholar 

  46. Larson, R. L. & Sager, W. W. Skewness of magnetic anomalies M0 to M29 in the northwestern Pacific. Proc. ODP B Sci. Res. 129, 471–481 (1992).

    Google Scholar 

  47. Lincoln, J. M., Pringle, M. S. & Premoli Silva, I. Early and Late Cretaceous volcanism and reef-building in the Marshall Islands. Geophys. Monogr. 77, 279–305 (1993).

    Google Scholar 

  48. Spencer, T. Rates of karst processes on raised reef limestones and their implications for coral reef histories. Coral Reef Cong. Proc. 5, 629–634 (1985).

    Google Scholar 

  49. Murray, J. W., Barber, R. T., Roman, M. R., Bacon, M. P. & Feely, R. A. Physical and biological controls on carbon cycling in the Equatorial Pacific. Science 266, 58–65 (1994).

    Article  ADS  CAS  Google Scholar 

  50. Jenkyns, H. C. Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains. Proc. ODP B Sci. Res. 143, 99– 108 (1995).

    CAS  Google Scholar 

  51. Brown, B. E. Coral bleaching: Causes and consequences. Coral Reefs 16, 129–138 (1997).

    Article  Google Scholar 

  52. Tarduno, J. A. & Sager, W. W. Polar standstill of the Mid-Cretaceous Pacific Plate and its geodynamic implications. Science 269, 956–959 ( 1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues from ODP Legs 143 and 144. In particular, we acknowledge the critical collaboration of E. Erba in the original development (ref. 19) of the ‘Death in the Tropics’ hypothesis and B. N. Opdyke for support and encouragement of a pilot project. We thank M. Greaves and E. Hawkins (Cambridge), J. Cartlidge (Oxford) and Lora Wingate (Michigan) for laboratory assistance. This work was supported by UK Ocean Drilling Program with continuing support from a UK National Environmental Research Council Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, P., Jenkyns, H., Elderfield, H. et al. The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots. Nature 392, 889–894 (1998). https://doi.org/10.1038/31865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31865

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing