Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Resistance to β-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein

Abstract

The β-lactam antibiotics kill bacteria by inhibiting a set of penicillin-binding proteins (PBPs) that catalyse the final stages of peptidoglycan synthesis1,2. In some bacteria the development of intrinsic resistance to β-lactam antibiotics by the reduction in the affinity of PBPs causes serious clinical problems1,3–11. The introduction of β-lactam antibiotics that are resistant to hydrolysis by β-lactamases may also result in the emergence of intrinsic resistance among the Enterobacteriaceae1. The clinical problems that would arise from the emergence of resistant PBPs in enterobacteria have led us to examine the ease with which Escherichia coli can gain resistance to β-lactams by the production of altered PBPs. The development of resistant PBPs also provides an interesting example of enzyme evolution, since it requires a subtle re-modelling of the enzyme active centre so that it retains affinity for its peptide substrate but excludes the structurally analogous2,12,13 β-lactam antibiotics. We show here that only four amino-acid substitutions need to be introduced into PBP 3 of E. coli to produce a strain possessing substantial levels of resistance to a wide variety of cephalosporins. We also show that transfer of the gene encoding the resistant PBP 3 from the chromosome to a plasmid could result in the spread of intrinsic resistance not only to other strains of E. coli but also to other enterobacterial species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spratt, B. G. J. gen. Microbiol. 129, 1247–1260 (1983).

    CAS  PubMed  Google Scholar 

  2. Waxman, D. J. & Strominger, J. L. A. Rev. Biochem. 52, 825–870 (1983).

    Article  CAS  Google Scholar 

  3. Reynolds, P. E. Br. med. Bull. 40, 3–10 (1984).

    Article  CAS  Google Scholar 

  4. Parr, T. R. & Bryan, L. E. in Antimicrobial Drug Resistance (ed. Bryan, L. E.) 81–111 (Academic, New York, 1984).

    Book  Google Scholar 

  5. Brown, F. J. & Reynolds, P. E. FEBS Lett. 122, 275–278 (1980).

    Article  CAS  Google Scholar 

  6. Hayes, M. V., Curtis, N. A. C., Wyke, A. & Ward, J. B. FEMS Microbiol. Lett. 10, 119–122 (1981).

    CAS  Google Scholar 

  7. Hartman, B. J. & Tomasz, A. J. Bact. 158, 513–516 (1984).

    Article  CAS  Google Scholar 

  8. Rossi, L., Tonin, E., Cheng, Y. R. & Fontana, R. Antimicrob. Ag. Chemother. 27, 828–831 (1985).

    Article  CAS  Google Scholar 

  9. Zighelboim, S. & Tomasz, A. Antimicrob. Ag. Chemother. 17, 434–442 (1980).

    Article  CAS  Google Scholar 

  10. Parr, T. R. & Bryan, L. E. Antimicrob. Ag. Chemother. 25, 747–753 (1984).

    Article  CAS  Google Scholar 

  11. Dougherty, T.J., Koller, A.E. & Tomasz, A. Antimicrob. Ag. Chemother. 18, 730–737 (1980).

    Article  CAS  Google Scholar 

  12. Tipper, D. J. & Strominger, J. L. Proc. natn. Acad. Sci. U.S.A. 54, 1133–1141 (1965).

    Article  ADS  CAS  Google Scholar 

  13. Spratt, B. G. Nature 274, 713–715 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Spratt, B. G. Proc. natn. Acad. Sci. U.S.A. 72, 2999–3003 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Sykes, R. B. et al. Nature 291, 489–491 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Hedge, P. J. & Spratt, B. G. Eur. J. Biochem. 151, 111–121 (1985).

    Article  CAS  Google Scholar 

  17. Harder, H. J., Nikaido, H. & Matsuhashi, M. Antimicrob. Ag. Chemother. 20, 549–552 (1981).

    Article  CAS  Google Scholar 

  18. Jaurin, B., Grundström, T. & Normark, S. EMBO J. 1, 875–881 (1982).

    Article  CAS  Google Scholar 

  19. Suzuki, H., Nishimura, Y. & Hirota, Y. Proc. natn. Acad. Sci. U.S.A. 75, 664–668 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Miller, J. H. Experiments in Molecular Genetics (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

  21. Coulondre, C. & Miller, J. H. J. molec. Biol. 117, 52–567 (1977).

    Article  Google Scholar 

  22. Hedge, P. J. & Spratt, B. G. FEBS Lett. 176, 179–184 (1984).

    Article  CAS  Google Scholar 

  23. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  24. Biggin, M. D., Gibson, T. J. & Hong, G. F. Proc. natn. Acad. Sci. U.S.A. 80, 3963–3965 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Nakamura, M., Maruyama, I. N., Soma, M., Kato, J.-I., Suzuki, H. & Hirota, Y. Molec. gen. Genet. 191, 1–9 (1983).

    Article  CAS  Google Scholar 

  26. Spratt, B. G. Eur. J. Biochem. 72, 341–352 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedge, P., Spratt, B. Resistance to β-lactam antibiotics by re-modelling the active site of an E. coli penicillin-binding protein. Nature 318, 478–480 (1985). https://doi.org/10.1038/318478a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318478a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing