Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic composition of atmospheric O2 in ice linked with deglaciation and global primary productivity

Abstract

In photosynthesis, O2 is continuously formed from H2O and released to the atmosphere. Coupled with respiration, photosynthesis forms a loop in which oxygen isotopes are exchanged between O2 and H2O. During the ice ages, sea water was enriched in δ18O by 1.3‰ relative to the present value1. Continental waters in the areas of high primary productivity exchange rapidly with the oceans. They probably presented a similar isotopic enrichment. Since the δ18O of glacial water was greater than at present, we would expect that the δ18O of atmospheric O2 was also greater than at present. Fireman and Norris2 and Horibe et al.3 have measured the δ18O of O2 from the glacial atmosphere by analysing trapped gases in ice cores. However, their data are either too few or too imprecise to demonstrate whether δ18O of atmospheric O2 has, in fact, varied. Here we present data on the changes, during the past 22 kyr approximately, in the δ18O of atmospheric O2 trapped in the ice core Dome C (East Antarctica, 74° S, 124° E). The results show that the isotopic composition of atmospheric O2 has indeed varied along with that of sea water, and that the δ18O (O2) record offers a tool for studying several important aspects of the global cycles of O2 and H2O in relation to the climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shackleton, N. J. Nature 215, 15–17 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Fireman, E. L. & Norris, T. L. Earth planet. Sci. Lett. 60, 339–350 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Horibe, Y., Shigehara, K. & Langway, C. Jr Earth planet. Sci. Lett. 73, 207–210 (1985).

    Article  CAS  Google Scholar 

  4. Delmas, R. J., Ascencio, J. M. & Legrand, M. Nature 284, 155–157 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Neftel, A., Oeschger, H., Schwander, J., Stauffer, R. & Zumbrun, R. Nature 295, 220–223 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Lorius, C. & Raynaud, D. in Carbon Dioxide: Current Views and Developments in Energy/Climate Research (eds. Bach, W. et al.) 145–176 (Riedel, Dordrecht, 1983).

    Book  Google Scholar 

  7. Lorius, C., Merlivat, L., Jouzel, J. & Pourchet, M. Nature 280, 644–648 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Raynaud, D., Delmas, R., Ascencio, J. M. & Legrand, M. Ann. Glaciol. 3, 265–268 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Labeyrie, L. D. Note CEA-N-2086, CEN Saclay, France (1979).

  10. Kroopnick, P. thesis, Univ. California, San Diego (1970).

  11. Craig, H. Geochim. cosmochim. Acta 12, 133–149 (1957).

    Article  ADS  CAS  Google Scholar 

  12. Kroopnick, P. & Craig, H. Science 175, 54–55 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Duplessy, J. C., Moyes, J. & Pujol, C. Nature 286, 479–482 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Duplessy, J. C., Labeyrie, L. & Shackleton, N. J. EOS 66, 292 (1985).

    Google Scholar 

  15. Schwander, J. & Stauffer, B. Nature 311, 45–47 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Raynaud, D. & Barnola, J. M. Nature 315, 309–311 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Urey, H. C. J. chem. Soc. 562–581 (1947).

  18. Stevens, C. L. R., Schultz, D., Van Baalen, C. & Parker, P. L. Pl. Physiol. 56, 126–129 (1975).

    Article  CAS  Google Scholar 

  19. Lane, G. A. & Dole, M. Science 123, 574–576 (1966).

    Article  ADS  Google Scholar 

  20. Kroopnick, P. & Craig, H. Earth planet. Sci. Lett. 32, 375–388 (1976).

    Article  ADS  CAS  Google Scholar 

  21. Ajtay, G. L., Ketner, P. & Duvigneaud, P. in The Global Carbon Cycle (SCOPE 13) (eds Bolin, B., Degens, E. T., Kempe, S. & Keiner, P.) 129–182 (Wiley, New York, 1979).

    Google Scholar 

  22. Woodwell, G. M. et al. Science 199, 141–146 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Bramryd, T. in The Global Carbon Cycle (SCOPE 13) (eds Bolin, B., Degens, E. T., Kempe, S. & Ketner, P.) 183–218 (Wiley, New York, 1979).

    Google Scholar 

  24. Eppley, R. W. in Primary Productivity in the Sea (ed. Falkowski, P.) 230–242 (Plenum, New York, 1980).

    Google Scholar 

  25. Jenkins, W. J. Nature 300, 246–248 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, M., Labeyrie, L., Raynaud, D. et al. Isotopic composition of atmospheric O2 in ice linked with deglaciation and global primary productivity. Nature 318, 349–352 (1985). https://doi.org/10.1038/318349a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318349a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing