Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Negative control at a distance mediates catabolite repression in yeast

Abstract

In prokaryotic organisms, the control of gene expression is mediated by regulatory proteins that activate or repress transcription1,2. However, the molecular mechanisms of positive and negative control are different. In terms of negative control, represser proteins bind to sites located within the promoter region and as a consequence sterically interfere with functional binding by RNA polymerase. Here, I examine the properties of a regulatory sequence that specifies catabolite (glucose) repression in the yeast Saccharomyces cerevisiae. Specifically, a DNA segment containing this regulatory site was fused upstream of the intact his3 promoter region and structural gene at several locations. Normally, his3 expression in these derivatives occurs at a basal level which can be induced by conditions of amino-acid starvation. However, in glucose medium, the catabolite regulatory sequence overrides the normal his3 promoter elements and reduces transcription both in normal and starvation conditions. The implication from these results is that in contrast to catabolite repression in Escherichia coli, which is mediated by catabolite-activating protein (CAP)3, catabolite repression in yeast occurs by a negative control mechanism involving a putative represser protein. The observation that this regulatory site exerts its repressing effects even when located upstream of an intact promoter region suggests that repression in yeast is not mediated by steric interference between regulatory proteins and the transcriptional apparatus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rosenberg, M. & Court, D. A. Rev. Genet. 13, 319–353 (1979).

    Article  CAS  Google Scholar 

  2. Johnson, A. D. et al. Nature 294, 217–223 (1981).

    Article  ADS  CAS  Google Scholar 

  3. deCrombrugghe, B., Busby, S. & Buc, H. in Biological Regulation and Development Vol. 3-B (ed. Yamamoto, K.) 129–167 (Plenum, New York, 1984).

    Book  Google Scholar 

  4. St John, T. P. & Davis, R. W. J. molec. Biol. 152, 285–315 (1981).

    Article  CAS  Google Scholar 

  5. Zitomer, R. S., Montgomery, D. L., Nichols, D. L. & Hall, B. D. Proc. natn. Acad. Sci. U.S.A. 76, 3627–3631 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Carlson, M. & Botstein, D. Cell 28, 145–154 (1982).

    Article  CAS  Google Scholar 

  7. Beier, D. & Young, E. T. Nature 300, 724–727 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Magasanik, B. Cold Spring Harb. Symp. quant. Biol. 26, 269–268?(1961).

    Article  Google Scholar 

  9. Adams, B. J. Bact. 111, 308–315 (1972).

    CAS  PubMed  Google Scholar 

  10. Guarente, L., Yocum, R.R. & Gifford, P. Proc. natn. Acad. Sci. U.S.A. 79, 7410–7414 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Johnston, M. & Davis, R. W. Molec. cell. Biol. 4, 1440–1448 (1984).

    Article  CAS  Google Scholar 

  12. West, R. W., Yocum, R. R. & Ptashne, M. Molec. cell. Biol. 4, 2467–2478 (1984).

    Article  CAS  Google Scholar 

  13. Struhl, K. Proc. natn. Acad. Sci. U.S.A. 81, 7865–7869 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Struhl, K. & Davis, R. W. J. molec. Biol. 152, 535–553 (1981).

    Article  CAS  Google Scholar 

  15. Struhl, K. Proc. natn. Acad. Sci. U.S.A. 78, 4461–4465 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Struhl, K. Proc. natn. Acad. Sci. U.S.A. 79, 7385–7389 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Struhl, K. Proc. natn. Acad. Sci. U.S.A. 82 (in the press).

  18. Giniger, E., Varnum, S. M. & Ptashne, M. Cell 40, 767–774 (1985).

    Article  CAS  Google Scholar 

  19. Rio, D. C. & Tjian, R. Cell 32, 1227–1240 (1983).

    Article  CAS  Google Scholar 

  20. Brent, R. & Ptashne, M. Nature 312, 612–615 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Struhl, K. & Davis, R.W. Proc. natn. Acad. Sci. U.S.A. 74, 5255–5259 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Struhl, K., Stinchcomb, D. T., Scherer, S. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 76, 1035–1039 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  25. Guarente, L. & Hoar, E. Proc. natn. Acad. Sci. U.S.A. 81, 7860–7864 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struhl, K. Negative control at a distance mediates catabolite repression in yeast. Nature 317, 822–824 (1985). https://doi.org/10.1038/317822a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317822a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing