Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis

Abstract

An old puzzle in protein biochemistry1 concerns the ready conversion of ovalbumin, by proteolysis, to the much more stable derivative, plakalbumin. Ovalbumin is now known to belong to the serpin superfamily2,3, most of which are serine proteinase inhibitors. We report here studies of two such members of the family, the human plasma proteins α1-antitrypsin and antithrombin, and show that they undergo a similar change in stability on selective proteolysis. This change, which is accompanied by a loss of inhibitory activity, can best be considered as an irreversible molecular transition from a native stressed (S) conformation, to a more ordered relaxed (R) form. The maintenance of the native S conformation, and hence the maintenance of inhibitory activity, is critically dependent on the integrity of an exposed loop of polypeptide. We propose that the susceptibility of this peptide loop to proteolytic cleavage gives it an incidental role as a physiological switch which allows the inactivation of individual inhibitors by specific proteolysis. The vulnerability of this exposed loop in each inhibitor also explains the pathological action of a number of venoms and toxins. In particular, the demonstration here of the cleavage of antithrombin, by leukocyte elastase, explains an observed change in blood coagulation that accompanies severe inflammation and which can result in fatal thrombosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Linderström-Lang, K. & Ottesen, M. Nature 159, 807–810 (1947).

    Article  ADS  Google Scholar 

  2. Hunt, L. T. & Dayhoff, M. O. Biochem. biophys. Res. Commun. 95, 864–971 (1980).

    Article  CAS  Google Scholar 

  3. Carrell, R. W. & Travis, J. Trends biochem. Sci. 10, 20–24 (1985).

    Article  CAS  Google Scholar 

  4. Löbermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. J. molec. Biol. 177, 531–556 (1984).

    Article  Google Scholar 

  5. Johnson, D. & Travis, J. Biochem. J. 163, 639–641 (1977).

    Article  CAS  Google Scholar 

  6. Linderström-Lang, K. & Ottesen, M. C.r. Lab. Carlsberg Ser. Chim. 26, 403–442 (1948).

    Google Scholar 

  7. Ottesen, M. C.r. Lab. Carlsberg Ser. Chim. 30, 212–269 (1958).

    Google Scholar 

  8. Wright, H. T. J. biol. Chem. 259, 14335–14336 (1984).

    CAS  PubMed  Google Scholar 

  9. Jochum, M., Lander, S., Heimburger, N. & Fritz, H. Hoppe-Seyler's Z. physiol. Chem. 362, 103–112 (1981).

    Article  CAS  Google Scholar 

  10. Owen, M. C., Brennan, S. O., Lewis, J. H. & Carrell, R. W. New Engl. J. Med. 309, 694–698 (1983).

    Article  CAS  Google Scholar 

  11. Weiss, S. J. & Regiani, S. J. clin. Invest. 73, 1297–1303 (1984).

    Article  CAS  Google Scholar 

  12. George, P. M., Vissers, M. C. M., Travis, J., Winterbourn, C. C. & Carrell, R. W. Lancet ii, 1426–1428 (1984).

    Article  Google Scholar 

  13. Brower, M. S. & Harpel, P. C. J. biol. Chem. 257, 9849–9854 (1982).

    CAS  PubMed  Google Scholar 

  14. Rosenberg, S., Barr, P. S., Najarian, R. & Hallewell, R. A. Nature 312, 77–80 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Courtney, M. et al. Nature 313, 149–151 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Carrell, R. Nature 312, 14 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Kress, L. F., Kurecki, T., Chan, S. K. & Laskowski, M. Sr J. biol. Chem. 254, 5317–5320 (1979).

    CAS  PubMed  Google Scholar 

  18. Kress, L. F., Catanese, J. & Hirayama, T. Biochim. biophys. Acta 745, 113–120 (1983).

    Article  CAS  Google Scholar 

  19. Morihara, K., Tsuzuki, H., Harada, M. & Iwata, T. J. Biochem., Tokyo 95, 795–804 (1984).

    Article  CAS  Google Scholar 

  20. Virca, G. D., Lyerly, D., Kreger, A. & Travis, J. Biochim. biophys. Acta 704, 267–271 (1982).

    Article  CAS  Google Scholar 

  21. Tanaka, T., Ohkubo, H. & Nakanishi, S. J. biol. Chem. 259, 8063–8065 (1984).

    CAS  PubMed  Google Scholar 

  22. Banda, M. J., Clark, E. J. & Werb, Z. J. clin. Invest. 75, 1758–1762 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrell, R., Owen, M. Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317, 730–732 (1985). https://doi.org/10.1038/317730a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317730a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing