Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Site-directed mutagenesis shows that tyrosine 248 of carboxypeptidase A does not play a crucial role in catalysis

Abstract

The residue Tyr 248 of carboxypeptidase A (CPA) is thought to play a role in catalysis by contributing a proton to the incipient amine anion generated during cleavage of peptide substrates1. To test this hypothesis we have modified the rat CPA cDNA2 by site-directed mutagenesis3 so that the codon for Tyr 248 is replaced by that for Phe. Here, we report the expression of the cDNAs for proCPA and its Tyr-to-Phe variant in yeast via the α-factor system4–6. Following zymogen activation by trypsin, wild-type CPA (CPA-WT) and variant CPA (CPA-Phe 248) were purified to homogeneity and characterized enzymatically. CPA-Phe 248 displays essentially undiminished values for the catalytic constant (kcat) towards various peptide and ester substrates. However, the Michaelis constants (Km values) of peptide substrates and the inhibition constant (Ki) of the potato carboxypeptidase inhibitor7 are increased 6-fold and 70-fold, respectively. These data suggest that the phenolic hydroxyl of Tyr 248 does not act as the requisite general acid catalyst but participates in ligand binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lipscomb, W. N. et al. Symp. Biol., Brookhaven 21, 24–90 (1968).

    CAS  Google Scholar 

  2. Quinto, C. et al. Proc. natn. Acad. Sci. U.S.A. 79, 31–35 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Hutchison, C. A. et al. J. biol. Chem. 253, 6551–6560 (1978).

    CAS  PubMed  Google Scholar 

  4. Emr, S. D., Schekman, R., Flessel, M. C. & Thorner, J. Proc. natn. Acad. Sci. U.S.A. 80, 7080–7084 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Brake, A. J. et al. Proc. natn. Acad. Sci. U.S.A. 81, 4642–4646 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Bitter, G. A., Chen, K. K., Banks, A. R. & Lai, R. Proc. natn. Acad. Sci. U.S.A. 81, 5330–5334 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Hass, G. M. & Ryan, C. A. Meth. Enzym. 778–791 (1981).

  8. Bradshaw, R. A., Ericsson, L. H., Walsh, K. A. & Neurath, H. Proc. natn. Acad. Sci. U.S.A. 63, 1389–1392 (1969).

    Article  ADS  CAS  Google Scholar 

  9. Rees, D. C., Lewis, M. & Lipscomb, W. N. J. molec. Biol. 168, 367–387 (1983).

    Article  CAS  Google Scholar 

  10. Rees, D. C. & Lipscomb, W. N. Proc. natn. Acad. Sci. U.S.A. 78, 5455–5459 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Lipscomb, W. N. Proc. natn. Acad. Sci. U.S.A. 77, 3875–3878 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Vallee, B. L., Galdes, A., Auld, D. S. & Riordan, J. F. in Metal Ions in Biology Vol. 5 (ed. Spiro, T. G.) 26–75 (Wiley, New York, 1983).

    Google Scholar 

  13. Kaiser, E. T. & Kaiser, B. L. Acc. chem. Res. 5, 219–224 (1972).

    Article  CAS  Google Scholar 

  14. Mock, W. L. & Chen, J. T. Archs Biochem. Biophys. 203, 542–552 (1980).

    Article  CAS  Google Scholar 

  15. Simpson, R. T., Riordan, J. F. & Vallee, B. L. Biochemistry 3, 616–622 (1963).

    Article  Google Scholar 

  16. Riordan, J. F., Sokolovsky, M. & Vallee, B. L. Biochemistry 6, 3609–3617 (1967).

    Article  CAS  Google Scholar 

  17. Urdea, M. S. & Legg, J. I. J. biol. Chem. 254, 11868–11874 (1979).

    CAS  PubMed  Google Scholar 

  18. Zoller, M. J. & Smith, M. DNA 3, 479–488 (1984).

    Article  CAS  Google Scholar 

  19. Craik, C. S. et al. Science 228, 291–297 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Kurjan, J. & Herskowitz, I. Cell 30, 933–943 (1982).

    Article  CAS  Google Scholar 

  21. Julius, D., Brake, A., Blau, L., Kunisawa, R. & Thorner, J. Cell 37, 1075–1089 (1984).

    Article  CAS  Google Scholar 

  22. Julius, D., Schekman, R. & Thorner, J. Cell 36, 309–318 (1984).

    Article  CAS  Google Scholar 

  23. Cueni, L. B., Bazzone, T. J., Riordan, J. F. & Vallee, B. L. Analyt. Biochem. 107, 341–349 (1980).

    Article  CAS  Google Scholar 

  24. Whitaker, J. R., Menger, F. & Bender, M. L. Biochemistry 5, 386–392 (1966).

    Article  CAS  Google Scholar 

  25. Davies, R. C., Riordan, J. F., Auld, D. S. & Vallee, B. L. Biochemistry 7, 1090–1099 (1968).

    Article  CAS  Google Scholar 

  26. Auld, D. S. & Vallee, B. L. Biochemistry 9, 602–609 (1970).

    Article  CAS  Google Scholar 

  27. Suh, J. & Kaiser, E. T. J. Am. chem. Soc. 92, 1940–1947 (1976).

    Article  Google Scholar 

  28. Glovsky, J., Hall, P. L. & Kaiser, E. T. Biochem. biophys. Res. Commun. 47, 244–247 (1972).

    Article  CAS  Google Scholar 

  29. Harrison, L. W., Auld, D. S. & Vallee, B. L. Proc. natn. Acad. Sci. U.S.A. 72, 4356–4360 (1975).

    Article  ADS  CAS  Google Scholar 

  30. Monzingo, A. F. & Matthews, B. W. Biochemistry 23, 5724–5729 (1984).

    Article  CAS  Google Scholar 

  31. Rees, D. C. & Lipscomb, W. N. J. molec. Biol. 160, 475–498 (1982).

    Article  CAS  Google Scholar 

  32. Dixon, M. Biochem. J. 129, 197–202 (1972).

    Article  CAS  Google Scholar 

  33. Fersht, A. R. et al. Nature 314, 235–236 (1985).

    Article  ADS  CAS  Google Scholar 

  34. Muszynka, G. & Riordan, J. F. Biochemistry 15, 46–51 (1976).

    Article  Google Scholar 

  35. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  36. Urdea, M. S. et al. Proc. natn. Acad. Sci. U.S.A. 80, 7461–7465 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  38. Broach, J. R. Meth. Enzym. 101, 307–325 (1983).

    Article  CAS  Google Scholar 

  39. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. J. Bact. 153, 163–168 (1983).

    CAS  PubMed  Google Scholar 

  40. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  41. Burnette, W. N. Analyt. Biochem. 112, 195–203 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardell, S., Craik, C., Hilvert, D. et al. Site-directed mutagenesis shows that tyrosine 248 of carboxypeptidase A does not play a crucial role in catalysis. Nature 317, 551–555 (1985). https://doi.org/10.1038/317551a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317551a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing