Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of talin as a major cytoplasmic protein implicated in platelet activation

Abstract

During platelet activation there is a major reorganization in the platelet cytoskeleton that accompanies a rapid change in platelet shape1,2. Many of the events associated with activation are attributed to a rise in calcium concentration within the platelet cytoplasm3,4. One direct consequence of the elevated calcium is the activation of a calcium-dependent protease that cleaves a major platelet protein of relative molecular mass (Mr) 235,000 (235K) to 200K (refs 5, 6). This protein, P235, has been purified6 and reported to interact with actin7, but the significance of the proteolytic cleavage is unknown. Talin, a cytoskeletal protein in smooth muscle and fibroblasts8,9, binds vinculin10 and, together with vinculin8,9,11,12, is localized in fibroblasts at sites of actin–membrane attachment. Talin and P235 have similar purification procedures, sedimentation coefficients and Stokes' radii (ref. 6 and Molony et al., unpublished observations). Of particular significance, talin is readily cleaved by proteases from 215K to a fragment of 190K27. Given these similarities we have investigated the possible relationship between these proteins. Here we demonstrate that platelet P235 is recognized by anti-talin antibody and that it binds vinculin. Both proteins are cleaved in vitro by the calcium-activated protease to yield similar fragments. We conclude that P235 corresponds to the platelet form of talin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nachmias, V. T. Semin. Hemat. 20, 261–281 (1983).

    CAS  PubMed  Google Scholar 

  2. Fox, J. E. B. & Phillips, D. R. Semin. Hemat. 20, 243–260 (1983).

    CAS  PubMed  Google Scholar 

  3. Detwiler, T. C., Charo, I. F. & Feinman, R. D. Thromb. Haem. 110, 207–211 (1978).

    Google Scholar 

  4. White, J. G., Rao, F. H. R. & Gerrard, J. M. Am. J. Path. 77, 135–149 (1974).

    CAS  PubMed  Google Scholar 

  5. Fox, J. E. B., Goll, D. E., Reynolds, C. C. & Phillips, D. R. J. biol. Chem. 260, 1060–1066 (1985).

    CAS  PubMed  Google Scholar 

  6. Collier, N. C. & Wang, K. J. biol. Chem. 257, 6937–6943 (1982).

    CAS  PubMed  Google Scholar 

  7. Collier, N. C. & Wang, K. FEBS Lett. 143, 205–210 (1982).

    Article  CAS  Google Scholar 

  8. Burridge, K., Kelly, T. & Connell, L. Phil. Trans. R. Soc. B299, 291–299 (1982).

    Article  CAS  Google Scholar 

  9. Burridge, K. & Connell, L. J. Cell Biol. 97, 359–367 (1983).

    Article  CAS  Google Scholar 

  10. Burridge, K. & Mangeat, P. Nature 308, 744–746 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Geiger, B. Cell 18, 193–205 (1979).

    Article  CAS  Google Scholar 

  12. Burridge, K. & Feramisco, J. R. Cell 19, 587–595 (1980).

    Article  CAS  Google Scholar 

  13. Otto, J. J. Cell Biol. 97, 1283–1287 (1983).

    Article  CAS  Google Scholar 

  14. Wilkins, J. A., Chen, K. Y. & Lin, S. Biochem. biophys. Res. Commun. 116, 1026–1032 (1983).

    Article  CAS  Google Scholar 

  15. Jockusch, B. M. & Isenberg, G. Proc. natn. Acad. Sci. U.S.A. 78, 3005–3009 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Wilkins, J. A. & Lin, S. Cell 28, 83–90 (1982).

    Article  CAS  Google Scholar 

  17. Burridge, K. & Feramisco, J. R. Cold Spring Harb. Symp. quant. Biol. 46, 587–597 (1982).

    Article  Google Scholar 

  18. Evans, R. R., Robson, R. M. & Stromer, M. H. J. biol. Chem. 259, 3916–3925 (1984).

    CAS  PubMed  Google Scholar 

  19. Rosenfeld, G. C., Hou, D. C., Dingus, J., Meza, I. & Bryan, J. J. Cell Biol. 100, 669–676 (1985).

    Article  CAS  Google Scholar 

  20. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  21. Burridge, K., Kelly, T. & Mangeat, P. J. Cell Biol. 95, 478–486 (1982).

    Article  CAS  Google Scholar 

  22. Davis, J. & Bennett, V. J. biol. Chem. 258, 7757–7766 (1983).

    CAS  Google Scholar 

  23. Towbin, H. et al. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Batteiger, B., Newhall, W. J. & Jones, R. B. J. immun. Meth. 55, 297–307 (1982).

    Article  CAS  Google Scholar 

  25. Hunter, W. M. & Greenwood, F. C. Nature 194, 495–496 (1962).

    Article  ADS  CAS  Google Scholar 

  26. Croall, D. E. & DeMartino, G. N. Biochim. biophys. Acta 788, 348–355 (1984).

    Article  CAS  Google Scholar 

  27. Beckerle, M. C. et al. J. Cell Biochem (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Halloran, T., Beckerle, M. & Burridge, K. Identification of talin as a major cytoplasmic protein implicated in platelet activation. Nature 317, 449–451 (1985). https://doi.org/10.1038/317449a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/317449a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing