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Mathematical topology 

Solving a knotty problem 
from Ian Stewart 

OCCASIONALL y scientific discoveries are 
made simultaneously by several different 
people. In topology, an extreme case 
occurred recently, and is described as fol
lows in the Bulletin of the American 
Mathematical Society. "The editors re
ceived, virtually within a period of a few 
days in late September and early October 
1984, four research announcements, each 
describing the same result - the existence 
and properties of a new polynomial in
variant for knots and links. There was 
variation in the approaches taken by the 
four groups and variation in corollaries 
and elaboration. These were: A new in
variant for knots and links by Peter Freyd 
and David Yetter; A polynomial invariant 
of knots and links by Jim Hoste; Topolo
gical invariants of knots and links by 
W.B.R. Lickorish and Kenneth C. Mil
lett; and A polynomial invariant for knots: 
a combinatorial and an algebraic approach 
by A. Ocneanu. It was evident from the 
circumstances that the four groups arrived 
at their results completely independently 
of each other, although all were inspired 
by the work of [Vaughan] Jones ... The 
degree of simultaneity was such that, by 
common consent, it was unproductive to 
try to assess priority. Indeed ... there 
is enough credit for all to share in." 

As a compromise, all six authors com
bined together to write a paper (Bull. Am. 
Math. Soc. 12, 239; 1985) stating their 
common main result and explaining each 
group's particular viewpoint. Curiously, 
there are considerable differences in the 
proof and the point of view adopted. The 
new invariant is simple and powerful, and 
it is surprising that it has eluded topolo
gists for so long. 

To a topologist a knot is any simple 
closed curve embedded in three
dimensional space. Two knots are (topo
logically) equivalent if there is a con
tinuous transformation of the surrounding 
three - dimensional space that carries one 
knot to the other. Similarly, a link is a 
finite set of simple closed curves, with an 
analogous definition of equivalence. The 
main problem is to decide whether two 
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given knots or links are equivalent, and 
this is generally approached by using the 
idea of a topological invariant. This com
prises some mathematical data (usually of 
a combinatorial or algebraic character) 
associated with each knot in such a way 
that equivalent knots have the same data. 
Thus knots with different data cannot be 
equivalent but knots with the same data 
need not always be equivalent. 

The first effective invariant was found 
by Hans Reidemeister in the 1920s, and it 
enabled him to give the first rigorous 
proof that knots exist. His invariant can be 
described in terms of the knot diagram, 
which is just a picture of the knot in which 
all crossings are neatly separated from 
each other and with a small gap drawn in 
the lower strand of each crossing, much as 
a road map shows a bridge. Pretend that 
this gap is real - the knot then splits up 
into several components; at each crossing 
one component forms the overpass while 

two others form the underpass. Say that 
the knot can be n-coloured if it is possible 
to assign to each component a number 
0,1, ... , n-l in such a way that: (1) at 
least two components have different num
bers; and (2) at each crossing the sum of 
the numbers on the two underpass compo
nents is equal to twice the number on the 
overpass, up to a multiple of n. 

Then, by analysing how deformations 
of the knot alter its diagram, and thus 
affect colourability, it can be shown that 
the set of integers n for which a given knot 
is n-colourable is an invariant. An ordin
ary overhand knot is 3-colourable but not 
5-colourable; a 'figure of eight' knot is 
5-colourable but not 3-colourable; and an 
un knotted loop is not n-colourable for any 
values of n. Hence all three are different. 

A more sophisticated invariant, the 
Alexander polynomial, associates with 
each knot or link K a polynomial in one 
variable t. For the trefoil it is r-t+ 1, and 
for the figure eight r- 3t+ 1. Again the 
invariant is good enough to distinguish the 
two. John Conway (Computational Prob
lems in Abstract Algebra 379; Pergamon, 
Oxford, 1970) developed a method for 
computing Alexander polynomials based 
on a relation between the Alexander 

polynomials of a given link K and two 
modifications of it, Land M. L is obtained 
from K by taking a single crossing and 
changing the overpass to an underpass; M 
is obtained by cutting both strands at the 
crossing and joining them in pairs so that 
they do not cross at all. Vaughan Jones 
(Bull. Am. Math. Soc. 12, 103; 1985) ap
plied the theory of Van Neumann algebras 

- a topic in functional analysis - to de
rive a new knot polynomial, also in one 
variable, satisfying a very similar relation. 

The latest invariant can be considered 
either as a homogeneous polynomial in 
three variables or as an inhomogeneous 
polynomial in two. In terms of three vari
ables it is the unique such function P on 
(equivalence classes of) knots such that: 
(1) XPK(X,y,Z) +yPL(x,y ,z)=O 
(2) PK (x,y,z)=l 
when K is an unknotted circle. Relation 
(1) is inspired by a property of Alexander 
and Jones polynomials, and both of these 
can be expressed in terms of P. But the 
new invariant has stronger properties. For 
example, for a left-handed trefoil knot it is 
X-2z2-2x-1y-x-2y', whereas for a right
handed trefoil it is y"2Z2_2xy-l_x2y-2. 
Hence, the trefoil and its mirror image are 
different. A reef knot and a granny knot 
also have different invariants p, and hence 
are inequivalent. Both of these are known 
results, but until now they have had very 
difficult proofs and cannot be obtained 
from the Alexander or Jones polynomials. 

The proof of the existence of the 
invariant P is technical but relatively 
straightforward given the property of re
lation (1). It may be accomplished in sev
eral ways. Freyd and Yetter use a ring
theoretical argument involving braid 
groups. Hoste uses geometrical and com
binatorial methods. Lickorish and Millett 
also use braids as well as some of 
Conway's ideas about tangles. Ocneanu's 
approach is similar to Jones's, involving 
number theory and functional analysis. 

The hard part is to recognize the im
portance of relation (1) to begin with: the 
idea is almost too simple to be credible. 
The surprise is that it really does work, 
and beautifully. Some ideas can be discov
ered at almost any time, but lie fallow for 
years until the moment is ripe: this would 
appear to be an extreme case. And mathe
maticians can take heart from this discov
ery - not every new idea need be more 
complicated than old ones. 0 
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