Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for the shikimate pathway in apicomplexan parasites

An Erratum to this article was published on 17 September 1998

Abstract

Parasites of the phylum Apicomplexa cause substantial morbidity, mortality and economic losses, and new medicines to treat them are needed urgently1,2. The shikimate pathway is an attractive target for herbicides and antimicrobial agents because it is essential in algae, higher plants, bacteria and fungi, but absent from mammals3,4. Here we present biochemical, genetic and chemotherapeutic evidence for the presence of enzymes of the shikimate pathway in apicomplexan parasites. In vitro growth of Toxoplasma gondii, Plasmodium falciparum (malaria) and Cryptosporidium parvum was inhibited by the herbicide glyphosate, a well-characterized inhibitor3 of the shikimate pathway enzyme 5-enolpyruvyl shikimate 3-phosphate synthase. This effect on T. gondii and P. falciparum was reversed by treatment with p-aminobenzoate, which suggests that the shikimate pathway supplies folate precursors for their growth. Glyphosate in combination with pyrimethamine limited T. gondii infection in mice. Four shikimate pathway enzymes were detected in extracts of T. gondii and glyphosate inhibited 5-enolpyruvyl shikimate 3-phosphate synthase activity. Genes encoding chorismate synthase, the final shikimate pathway enzyme, were cloned from T. gondii and P. falciparum. This discovery of a functional shikimate pathway in apicomplexan parasites provides several targets for the development of new antiparasite agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional and enzymatic evidence for the shikimate pathway in T.gondii
Figure 2: Comparison of deduced amino-acid sequences of T. gondii, P. falciparum and other organisms' chorismate synthases.
Figure 3: Evidence for the shikimate pathway in P. falciparum and C. parvum.

Similar content being viewed by others

References

  1. Fichera, M. E. & Roos, D. S. Aplastid organelle as a drug target in apicomplexan parasites. Nature 390, 407–409 (1997).

    Article  ADS  CAS  Google Scholar 

  2. McFadden, G. I., Keith, M. E., Monholland, J. M. & Lang-Unasch, N. Plastids in human parasites. Nature 381, 482 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Kishore, G. M. & Shah, D. M. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57, 627–663 (1988).

    Article  CAS  Google Scholar 

  4. Haslam, E. Shikimic Acid: Metabolism and Metabolites(John Wiley, Chichester, 1993).

    Google Scholar 

  5. Williamson, D. H. et al. The evolutionary origin of the 35kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol. Gen. Genet. 243, 249–252 (1994).

    CAS  PubMed  Google Scholar 

  6. Kohler, S. et al. Aplastid of probable green algal origin in apicomplexan parasites. Science 275, 1485–1489 (1997).

    Article  CAS  Google Scholar 

  7. Hackstein, J. H. P., Mackenstedt, U., Melhorn, H., Schubert, H. & Leunissen, J. A. M. Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol. Res. 81, 207–216 (1995).

    CAS  PubMed  Google Scholar 

  8. Bentley, R. The shikimate pathway—a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25, 307–383 (1990).

    Article  CAS  Google Scholar 

  9. Gorlach, J., Schmid, J. & Amrhein, N. Differential expression of tomato (Lycopersicon esculentum L.) genes encoding shikimate pathway isoenzymes. II. Chorismate synthase. Plant Mol. Biol. 23, 707–716 (1993).

    Article  CAS  Google Scholar 

  10. Haucke, V. & Schatz, G. Import of proteins into motochondria and chloroplasts. Cell Biol. 7, 103–106 (1997).

    CAS  Google Scholar 

  11. Steinrucken, H. C. & Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid 3-phosphate synthase. Biochem. Biophys. Res. Commun. 94, 1207–1212 (1980).

    Article  CAS  Google Scholar 

  12. Coggins, J. R. et al. The arom multifunctional enzyme (Neurospora crassa). Methods Enzymol. 142, 325–335 (1987).

    Article  CAS  Google Scholar 

  13. Ramjee, M. K., Coggins, J. R. & Thorneley, R. N. F. Acontinuous, anaerobic spectrophotometric assay for chorismate synthase activity that utilizes photoreduced flavin mononucleotide. Anal. Biochem. 220, 137–141 (1994).

    Article  CAS  Google Scholar 

  14. Deka, R., Anton, I. A., Dunbar, B. & Coggins, J. R. The characterisation of the shikimate pathway enzyme dehydroquinase from Pisum sativum. FEBS Lett. 349, 397–402 (1994).

    Article  CAS  Google Scholar 

  15. Mousdale, D. M. & Coggins, J. R. High performance liquid chromatography of shikimate pathway intermediates. J. Chromatogr. 329, 268–272 (1985).

    Article  CAS  Google Scholar 

  16. Duggan, P., Parker, E., Coggins, J. & Abell, C. Enzymatic synthesis of (6R) and (6S)-fluoroshikimic acids. Bioorg. Med. Chem. Lett. 5, 2347–2352 (1995).

    Article  CAS  Google Scholar 

  17. Dieckmann, A. & Jung, A. Mechanisms of sulfadoxine resistance in Plasmodium flaciparum. Mol. Biochem. Parasitol. 19, 143–147 (1986).

    Article  CAS  Google Scholar 

  18. Marzabadi, M. R. et al. An EPSP synthase inhibitor joining shikimate-3-phosphate with glyphosate: synthesis and ligand binding studies. Biochemistry 35, 4199–4210 (1996).

    Article  CAS  Google Scholar 

  19. Davies, G. M. et al. (6S)-6-fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrob. Agents Chemother. 38, 403–406 (1994).

    Article  CAS  Google Scholar 

  20. Banerji, S., Lugli, E. B., Miller, R. F. & Wakefield, A. E. Analysis of genetic diversity at the arom locus in isolates of Pneumocystis carinii. J. Euk. Microbiol. 42, 675–679 (1995).

    Article  CAS  Google Scholar 

  21. Garbe, T. et al. The Mycobacterium tuberculosis shikimate pathway genes: Evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Mol. Gen. Genet. 228, 385–392 (1991).

    Article  CAS  Google Scholar 

  22. Mack, D. & McLeod, R. Anew micromethod to study effects of antimicrobial agents on Toxoplasma gondii: Comparison of sulfadoxine and sulfadiazine and study of clindamycin, metronidazole, and cyclosporin A. Antimicrob. Agents Chemother. 26, 26–30 (1984).

    Article  CAS  Google Scholar 

  23. White, P. J., Millar, G. & Coggins, J. R. The overexpression, purification and complete amino acid sequence of chorismate synthase from Escherichia coli K12 and its comparison with the enzyme from Neurospora crassa. Biochem. J. 251, 313–322 (1988).

    Article  CAS  Google Scholar 

  24. Schmidt, J., Bubunenko, M. & Subramanian, A. R. Anovel operon organization involving the genes for chorismate synthase (aromatic biosynthesis pathway) and ribosomal GTPase center proteins (L11, L1, L10, L12: rp1KAJL) in cyanobacterium Synechocystis PCC 6803. J. Biol. Chem. 268, 27447–27457 (1993).

    CAS  PubMed  Google Scholar 

  25. Jones, D. G., Reusser, U. & Braus, G. H. Molecular cloning, characterization and analysis of the regulation of the aroC gene, encoding chorismate synthase, of Saccharomyces cerevisiae. Mol. Microbiol. 5, 2143–2152 (1991).

    Article  CAS  Google Scholar 

  26. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus infleunzae Rd. Science 269, 496–512 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Henstrand, J., Amrhein, N. & Schmid, J. Cloning and characterization of a heterologously expressed bifunctional chorismate synthase/flavin reductase from Neurospora crassa. J. Biol. Chem. 270, 20447–20452 (1995).

    Article  CAS  Google Scholar 

  28. Milhous, W. K., Weatherly, N. F., Bowdre, J. H. & Desjardins, R. E. In vitro activities and mechanisms of resistance to anti-folates and anti-malarial drugs. Antimicrob. Agents Chemother. 27, 525–530 (1985).

    Article  CAS  Google Scholar 

  29. Oduola, A. M. J., Weatherly, N. F., Bowdre, J. H. & Desjardins, R. E. Plasmodium falciparum—cloning by single erythrocyte micromanipulation and heterogeneity in vitro. Exp. Parasitol. 66, 86–95 (1988).

    Article  CAS  Google Scholar 

  30. Tzipori, S. Laboratory investigations and chemotherapy of Cryptosporidium parvum. Adv. Parasitol. 40, 188–221 (1998).

    Google Scholar 

Download references

Acknowledgements

We thank L. Mets for information about plants; D. Sibley and the Toxoplasma EST Project at Washington University for the putative chorismate synthase EST; M. Gottlieb, J. Boothroyd, K. Kim, L. Weiss, A. Lapthorn, A. Martin, M. Rust and U. Gross for discussions; and V. Aitchison and E. Holfels for assistance in preparation of this manuscript. F.R. was a recipient of a Royal Pathological Society of Great Britain and Northern Ireland Travelling Fellowship, C.W.R. was a Fulbright Scholar, and a Michael Reese Physicians' Research and Education Foundation Postdoctoral Fellow and Visiting Scholar and is a Glaxo Jack Lecturer. R.M. is the Jules and Doris Stein Research to Prevent Blindness Professor at The University of Chicago. This work was supported by the NIH NIAID TMP program, the Toxoplasmosis Research Institute, the Research to Prevent Blindness Foundation, an NIH contract from NIH NIAID (the AIDS Opportunistic Infection Drug Discovery), and the WHO-NIH-WRAIR Drug Development Programs, The Wellcome Trust and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima McLeod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, F., Roberts, C., Johnson, J. et al. Evidence for the shikimate pathway in apicomplexan parasites. Nature 393, 801–805 (1998). https://doi.org/10.1038/31723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31723

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing