Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem

Abstract

Although there are 107–109 bacteria per litre of sea water and up to 50% of marine primary productivity passes through them1, no direct information exists on small-scale spatial distributions of individual bacteria. It has been proposed that bacteria cluster around participate nutrient sources2–4, but evidence for this is indirect, based on the presence of chemo taxis in isolates and a broad range—10−9–10−4 M—of uptake affinity constants3. These data have led to the suggestion that there exist oceanic microzones having utilizable dissolved organic carbon (uDOC) orders of magnitude above background concentrations4. Here, our calculations of size (10−1 cm), utilizable DOC concentrations (10−9–10−7 M) and lifetimes of these nutrient gradients suggest that bacteria cluster around phytoplankton in low-turbulence layers and sheets comprising the thermocline. There, phytoplankton may sink slowly enough for bacteria to keep up with them, and mixing times are long enough to allow nutrient gradients to develop and bacteria to track these gradients. However, very favourable conditions are required for micro zone concentrations to be significantly above background.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fuhrman, J. A. & Azam, F. Mar. Biol 66, 109–120 (1982).

    Article  Google Scholar 

  2. Bell, W. H. & Mitchell, R. Biol. Bull. 143(2), 265–277 (1972).

    Article  Google Scholar 

  3. Azam, F. & Hodson, R. E. Mar. Ecol. Prog. Ser. 6, 213–222 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Azam, F. & Ammerman, J. W. Flows of Energy and Nutrients in Marine Ecosystems (ed. Fasham, M. J. R.) (Plenum, New York, 1984).

    Google Scholar 

  5. Sharp, J. J. Limnol. Oceanogr. 22(3), 381–399 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Lancelot, C. Mar. Ecol. Prog. Ser. 1, 179–186 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Parsons, T. R. et al. Biological Oceanographic Processes (Pergamon, New York, 1977).

    Google Scholar 

  8. Chrost, R. H. & Faust, M. A. J. Plankton Res. 5(4), 477–493 (1983).

    Article  CAS  Google Scholar 

  9. Fogg, G. E. Physiology and Biochemistry of Algae (ed. Lewin, R. A.) (Academic, New York, 1963).

    Google Scholar 

  10. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford University Press, 1959).

    MATH  Google Scholar 

  11. Carlucci, A. F., Craven, D. B. & Henrichs, S. M. Appl. envir. Microbiol. 48, 165–170 (1984).

    CAS  Google Scholar 

  12. Mopper, K. et al. Mar. Chem. 10, 55–66 (1980).

    Article  CAS  Google Scholar 

  13. Weast, R. C. (ed.) Handbook of Chemistry and Physics 56th edn (CRC Press, Cleveland, 1975).

  14. Woods, J. D. Met. Mag., Lond. 97, (1148), 65–72 (1968).

    Google Scholar 

  15. Berg, H. C. & Purcell, E. M. Biophys. J. 20, 193–219 (1977).

    Article  ADS  CAS  Google Scholar 

  16. DeLisi, C. Nature 289, 322–323 (1981).

    Article  ADS  CAS  Google Scholar 

  17. McNab, R. M. & Koshland, D. E. Jr., Proc. natn. Acad. Sci. U.S.A. 69, 2509–2512 (1972).

    Article  ADS  Google Scholar 

  18. Berg, H. C. Nature 254, 389–392 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Adler, J. Science 166, 1588–1597 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Dahlquist, F. W. et al. Nature new Biol. 236, 120–123 (1972).

    Article  CAS  Google Scholar 

  21. Bienfang, P. K. Mar. Biol. 61, 69–77 (1980).

    Article  Google Scholar 

  22. Lee, R. E. Phycology (Cambridge University Press, 1980).

    Google Scholar 

  23. Hobson, L. A. & Lorenzen, C. J. Deep Sea Res. 19, 297–306 (1972).

    Google Scholar 

  24. Woods, J.D. & Fosberry, G.G. Underwat. Ass. Rep. 5–19 (1966–67).

  25. Lehman, J. T. & Scavia, D. Science 216, 729–730 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Jackson, G. A. Nature 284, 439–441 (1980).

    Article  ADS  Google Scholar 

  27. Batchelor, G. K. The Theory of Homogeneous Turbulence (Cambridge University Press, 1956).

    MATH  Google Scholar 

  28. Ozmidov, R. V. Izv. Akad. Nauk. SSR 1, 439–448 (1965). (Engl. transl. Izvestiya atmos. Oceanic Phys. 1, 257–261 (1965).

    Google Scholar 

  29. Gregg, M. C. J. phys. Oceanogr. 14, 588–711 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, J., Okubo, A. & Fuhrman, J. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985). https://doi.org/10.1038/316058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/316058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing