Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A thermo-mechanical model of continental lithosphere

Abstract

An understanding of the mechanical response of the continental lithosphere to vertical surface loading is crucial when considering geodynamic processes such as intraplate basin formation, postglacial rebound or mountain building. Previous models of the mechanical behaviour of the lithosphere, which are more successful in oceanic than in continental regions, have used specific isotherms to delineate an effectively elastic zone of the lithosphere and result in mathematically convenient descriptions of mechanical behaviour. Heat flow and lithosphere flexure data for continents, however, suggest that this relationship is more complex, which can be demonstrated by numerical modelling of the loading of a heterogeneous visco-elastic lithosphere with temperature-dependent viscosity. Viscous stress relaxation in the lower and hotter section of the lithosphere results in a region of stress concentration dependent on the thermal state of the lithosphere, its structure and the time since loading. Here we present initial numerical models, based on a relatively simple steady-state thermal model constrained by present-day heat flow, which explain observations of continental flexure except in regions which have experienced a long or complex thermal history since loading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walcott, R. I. J. geophys. Res. 75, 3941–3954 (1970).

    Article  ADS  Google Scholar 

  2. Caldwell, J. G. & Turcotte, D. L. J. geophys. Res. 84, 7572–7576 (1979).

    Article  ADS  Google Scholar 

  3. Karner, G. D. & Watts, A. B. J. geophys. Res. 88, 10449–10477 (1983).

    Article  ADS  Google Scholar 

  4. Ashby, M. F. & Verrall, R. A. Phil. Trans. R. Soc. A288, 59–95 (1977).

    Article  ADS  Google Scholar 

  5. Goetze, C. Phil. Trans. R. Soc. A288, 99–119 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Kirby, S. Rev. Geophys. Space Phys. 1458–1487 (1983).

    Article  ADS  Google Scholar 

  7. Goetze, C. & Evans, B. Geophys. J. R. astr. Soc. 59, 463–478 (1979).

    Article  ADS  Google Scholar 

  8. Watts, A. B., Bodine, J. H. & Steckler, M. S. J. geophys. Res. 85, 6369–6376 (1980).

    Article  ADS  Google Scholar 

  9. McNutt, M. K. & Menard, H. W. Geophys. J. R. astr. Soc. 71, 363–394 (1982).

    Article  ADS  Google Scholar 

  10. Quinlan, Garry M. & Beaumont, C. Can. J. Earth Sci. (in the press).

  11. Watts, A. B. & Talwani, M. Geophys. J. R. astr. Soc. 36, 57–90 (1974).

    Article  ADS  Google Scholar 

  12. Bodine, J. H., Steckler, M. S. & Watts, A. B. J. geophys. Res. 86, 3695–3707 (1981).

    Article  ADS  Google Scholar 

  13. Parsons, B. & Sclater, J. G. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  14. Karner, G. D., Steckler, M. S. & Thorne, J. A. Nature 304, 250–253 (1983).s

    Article  ADS  Google Scholar 

  15. Rao, R. U. M., Rao, G. V. & Reddy, G. K. Earth planet. Sci. Lett. 59, 288–302 (1983).

    Article  ADS  Google Scholar 

  16. Chapman, D. S., Germann, D. & Neugebauer, H. J. Terra Cognita 3, 95 (abstract) (1983).

    Google Scholar 

  17. Morgan, P. & Sass, J. H. J. Geodynamics 1, 143–166 (1984).

    Article  ADS  Google Scholar 

  18. Courtney, R. C. & Beaumont, C. Nature 305, 201–204 (1983).

    Article  ADS  Google Scholar 

  19. Owen, D. R. J. & Hinton, E. Finite Elements in Plasticity (Pineridge, Swansea, (1980).

    MATH  Google Scholar 

  20. Willett, S. D., Chapman, D. S. & Neugebauer, H. J. Ann. Geophys. (in the press).

  21. Pollack, H. N. & Chapman, D. S. Tectonophysics 38, 279–296 (1977).

    Article  ADS  Google Scholar 

  22. Kusznir, N. S. & Park, R. G. Nature 299, 540–542 (1982).

    Article  ADS  Google Scholar 

  23. Watts, A. B., Karner, G. D. & Steckler, M. S. Phil. Trans. R. Soc. A305, 249–281 (1982).

    Article  ADS  Google Scholar 

  24. Jessop, A. M. & Lewis, T. J. Tectonophysics 50, 55–77 (1978).

    Article  ADS  Google Scholar 

  25. Cermak, V. in Terrestrial Heat Flow in Europe (eds Cermak, V. & Rybach, L.) 3–40 (Springer, Heidelberg 1979).

    Google Scholar 

  26. Majorowicz, J. A. & Jessop, A. M. Tectonophysics 74, 209–238 (1981).

    Article  ADS  Google Scholar 

  27. Jessop, A. M., Hobart, M. A. & Sclater, J. G. Geotherm. Ser. 5, (Geothermal Service of Canada, Earth Physics Branch, Ottawa, 1976).

  28. Rao, R. U. M., Rao, G. V. & Narain, H. Earth planet. Sci. Lett. 30, 57–64 (1976).

    Article  ADS  Google Scholar 

  29. Rao, G. V. & Rao, R. U. M. Earth planet. Sci. Lett. 48, 397–405 (1980).

    Article  ADS  Google Scholar 

  30. Sass, J. H. et al. in McGraw-Hill/CINDAS Data Series on Material Properties Vol. II-2 (eds Touloukian, Y. S., Judd, W. R. & Roy, R. F. 503–548 (McGraw-Hill, New York. 1981).

    Google Scholar 

  31. Lewis, T. J. & Jessop, A. M. Can. J. Earth Sci. 18, 366–375 (1981).

    Article  ADS  Google Scholar 

  32. Chapman, D. S. Abstracts of papers presented at Interdisciplinary Symposia 14, 436 (XVII General Assembly of the IUGG, Canberra, Australia, 1979).

    Google Scholar 

  33. Cull, J. P. & Denham, D. Bur. Miner. Resources J. Aust. Geol. Geophys. 4(1), 1–13 (1979).

    Google Scholar 

  34. Haenel, R. in Atlas of Subsurface Temperatures in the European Community (eds Haenel, R. et al.) (Th. Schaefer, Hannover, 1980).

    Google Scholar 

  35. Gosnold, W. D. Jr Bulletin No. 84-04-MMRRI-04, 1–110 (Mining and Mineral Resources Research Institute, University of North Dakota, Grand Forks, 1984).

  36. Ahern, J. L. & Mrkvicka, S. R. Tectonics 3, 79–102 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willett, S., Chapman, D. & Neugebauer, H. A thermo-mechanical model of continental lithosphere. Nature 314, 520–523 (1985). https://doi.org/10.1038/314520a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314520a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing