Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Al3+ coordination changes in liquid aluminosilicates under pressure

Abstract

Geochemists often debate the conditions in which Al3+ may become 6-coordinated in molten silicates and how such liquid structures are related to those of coexisting crystal phases1–4. To date no experimental evidence for the occurrence of Al3+ in this coordination state has been presented and computer simulation studies have suggested that pressures exceeding 100 kbar may be required for the 4→6 conversion5,6. To examine this question in the laboratory, we have taken advantage of the ability of the glass transition to freeze the structural equilibrium of a high-pressure melt and preserve it for subsequent examination in ambient conditions. Glasses of albite composition have been prepared by quenching melts under pressures of 0–80 kbar (0–8 GPa). The Al3+ coordination has been determined by 27Al solid-state NMR spectrometry. We find that the 4-coordinated state is retained to pressures well beyond 30 kbar. A new peak at −16 p.p.m. relative to Al(H2O)3+6, which we associate with octahedral Al3+ appears weakly at 60 kbar and becomes a prominent feature of the spectrum at 80 kbar.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Waff, H. S. Geophys. J. Res. Lett. 2, 193–196 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Velde, B. & Kushiro, I. Yb. Carnegie Instn. Wash. 75, 618–620 (1975).

    Google Scholar 

  3. Sharma, S. K., Virgo, D. & Kuchiro, I. Am. Miner. 64, 779–787 (1979); J. non-cryst. Solids 33, 235–248 (1979).

    CAS  Google Scholar 

  4. De Jong, B. H. W. S., Schramm, C. M. & Paziale, V. E. Geochim. cosmochim. Acta 47, 1223–1236 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Angell, C. A., Cheeseman, P. A. & Tamaddon, S. Science 218, 885–887 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Angell, C. A., Cheeseman, P. A. & Tamaddon, S. Bull. Miner. 1–2, 87–99 (1983).

    Article  Google Scholar 

  7. Renniger, A. L. & Uhlmann, D. R. J. non-cryst. Solids 16, 325–327 (1974).

    Article  ADS  Google Scholar 

  8. Buccaro, J. A. & Dardy, H. D. J. non-cryst. Solids 20, 149–151 (1976).

    Article  ADS  Google Scholar 

  9. Laberge, N. L., Vasilescu, V. V., Montrose, C. J. & Macedo, P. B. J. Am. ceram. Soc. 56, 506–509 (1973).

    Article  CAS  Google Scholar 

  10. Landau, L. & Lifschitz, E. M., Statistical Physics. Ch. 12 (Pergamon, London, 1958).

    Google Scholar 

  11. Ohtani, E. J. Phys. Earth 27, 189–208 (1979).

    Article  CAS  Google Scholar 

  12. Barkatt, R. & Angell, C. A. J. chem. Phys. 70, 901–911 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Müller, D. Phys. Chem. Glasses 24, 37–42 (1983).

    ADS  Google Scholar 

  14. Müller, D., Gessner, W., Behrens, H. J. & Scheler, G. Chem. Phys. Lett. 79, 59–62 (1981).

    Article  ADS  Google Scholar 

  15. Müller, D., Hoebbel, D. & Gessner, W. Chem. Phys. Lett. 84, 25–28 (1981).

    Article  ADS  Google Scholar 

  16. Woodcock, L. V., Angell, C. A. & Cheeseman, P. A. J. chem. Phys. 65, 1565–1577 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Kushiro, I. Geochim. cosmochim. Acta 47, 1415–1422 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Bell, P. M. & Roseboom, E. H. Miner. Soc Am. spec. Pap. 2, 151–161 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohtani, E., Taulelle, F. & Angell, C. Al3+ coordination changes in liquid aluminosilicates under pressure. Nature 314, 78–81 (1985). https://doi.org/10.1038/314078a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314078a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing