Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of catalytic and regulatory sites in phosphorylases

Abstract

Glycogen phosphorylase (E.C.2.4.1.1) was the first enzyme shown to be regulated by allosteric effectors1 and by protein phosphorylation2. Transcriptional control of bacterial phosphorylases3 further extends the range of regulatory mechanisms by which phosphorylases contribute to the control of carbohydrate metabolism. Despite their regulatory differences, all known phosphorylases share catalytic and structural properties4,5 and a strongly conserved pyridoxal-5′-phosphate binding site6–9; this makes phosphorylases highly attractive for investigations into the evolution of regulatory mechanisms10. The primary6 and tertiary4,11–17 structure of rabbit muscle phosphorylase has been determined completely. Recently, comparable amino acid sequences from plants18,19 and bacteria20 have been resolved. Here we report the sequence of 687 amino acids of Escherichia coli maltodextrin phosphorylase, deduced from a cloned malP gene sequence. Alignment of animal and bacterial phosphorylase sequences shows strong homology (48%) throughout 91% of the polypeptide chain enclosing the extrinsic catalytic region. Within this region, structural homology identifies a presumed phosphate-binding site from which the allosteric 5′ AMP binding site of rabbit muscle phosphorylase might have developed. From the decreased alignment at the N-terminus and the presence of additional residues compared with bacterial phosphorylases, we conclude that the regulatory sequences that also carry the phosphorylation site in the muscle enzyme were joined to a presumed ancestral precursor gene by gene fusion after separation of the eukaryotic and prokaryotic lines of descent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Helmreich, E. & Cori, C. F. Proc. natn. Acad. Sci. U.S.A. 51, 131–138 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Krebs, E. G. & Fischer, E. H. Biochim. biophys. Acta 20, 150–157 (1956).

    Article  CAS  Google Scholar 

  3. Débarbouillé, M. & Raibaud, O. J. Bact. 153, 1221–1227 (1983).

    PubMed  Google Scholar 

  4. Fletterick, R. J. & Madsen, N. B. A. Rev. Biochem. 49, 31–61 (1980).

    Article  CAS  Google Scholar 

  5. Helmreich, E. J. M. & Klein, H. W. Angew. Chem., int. Edn engl. 19, 441–455 (1980).

    Article  CAS  Google Scholar 

  6. Titani, K. et al. Proc. natn. Acad. Sci. U.S.A. 74, 4762–4766 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Cohen, P., Saari, J. C. & Fischer, E. H. Biochemistry 12, 5233–5241 (1973).

    Article  CAS  Google Scholar 

  8. Nakano, K., Wakabayashi, S., Hase, T., Matsubara, H. & Fukui, T. J. Biochem., Tokyo 83, 1085–1094 (1978).

    Article  CAS  Google Scholar 

  9. Schächtele, K. H., Schiltz, E. & Palm, D. Eur. J. Biochem. 92, 427–435 (1978).

    Article  Google Scholar 

  10. Fischer, E. H., Pocker, A. & Saari, J. C. Essays Biochem. 6, 23–68 (1970).

    CAS  PubMed  Google Scholar 

  11. Sprang, S. R. & Fletterick, R. J. J. molec. Biol. 131, 523–551 (1979).

    Article  CAS  Google Scholar 

  12. Johnson, L. N., Stura, E. A., Wilson, K. S., Sansom, M. S. P. & Weber, I. T. J. molec. Biol. 134, 639–653 (1979).

    Article  CAS  Google Scholar 

  13. Johnson, L. N., Jenkins, J. A., Wilkins, K. S., Stura, E. A. & Zanotti, G. J. molec. Biol. 140, 565–580 (1980).

    Article  CAS  Google Scholar 

  14. Jenkins, J. A. et al. Phil. Trans. R. Soc. B293, 23–41 (1981).

    Article  CAS  Google Scholar 

  15. Sprang, S. R., Goldsmith, E. J., Fletterick, R. J., Withers, S. G. & Madsen, N. B. Biochemistry 21, 5364–5371 (1982).

    Article  CAS  Google Scholar 

  16. Withers, S. G., Madsen, N. B., Sprang, S. R. & Fletterick, R. J. Biochemistry 21, 5372–5382 (1982).

    Article  CAS  Google Scholar 

  17. Stura, E. A. et al. J. molec. Biol. 170, 529–565 (1983).

    Article  CAS  Google Scholar 

  18. Nakano, K., Fukui, T. & Matsubara, H. J. biol. Chem. 255, 9255–9261 (1980).

    CAS  PubMed  Google Scholar 

  19. Nakano, K., Kikumoto, Y. & Fukui, T. in Chemical and Biological Aspects of Vitamin B6 Catalysis Vol. A (ed. Evangelopoulos, A. E.) 171–180 (Liss, New York, 1984).

    Google Scholar 

  20. Palm, D., Goerl, R., Burger, K. J., Buehner, M. & Schwartz, M. in Chemical and Biological Aspects of Vitamin B6 Catalysis Vol. A (ed. Evangelopoulos, A. E.) 209–229 (Liss, New York, 1984).

    Google Scholar 

  21. Hofnung, M., Schwartz, M. & Hatfield, D. J. molec. Biol. 61, 681–694 (1971).

    Article  CAS  Google Scholar 

  22. Raibaud, O. & Schwartz, M. J. Bact. 143, 761–771 (1980).

    CAS  PubMed  Google Scholar 

  23. Schiltz, E., Palm, D. & Klein, H. W. FEBS Lett. 109, 59–62 (1980).

    Article  CAS  Google Scholar 

  24. Débarbouillé, M., Cossart, P. & Raibaud, O. Molec. gen. Genet. 185, 88–92 (1982).

    Article  Google Scholar 

  25. Hocking, J. D. & Harris, J. I. Eur. J. Biochem. 108, 567–573 (1980).

    Article  CAS  Google Scholar 

  26. Goldsmith, E., Sprang, S. & Fletterick, R. J. molec. Biol. 156, 411–427 (1982).

    Article  CAS  Google Scholar 

  27. Goldsmith, E. & Fletterick, R. Pure appl. Chem. 55, 577–588 (1983).

    Article  CAS  Google Scholar 

  28. Philip, G., Gringel, G. & Palm, D. Biochemistry 21, 3043–3050 (1982).

    Article  CAS  Google Scholar 

  29. Keim, P., Heinrikson, R. L. & Fitch, W. M. J. molec. Biol. 151, 179–197 (1981).

    Article  CAS  Google Scholar 

  30. Weber, I. T., Takio, K., Titani, K. & Steitz, T. A. Proc. natn. Acad. Sci. U.S.A. 79, 7679–7683 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Krebs, E. G. & Beavo, J. A. A. Rev. Biochem. 48, 923–959 (1979).

    Article  CAS  Google Scholar 

  32. Lacks, S. A., Dunn, J. J. & Greenberg, B. Cell 31, 327–336 (1982).

    Article  CAS  Google Scholar 

  33. Blake, C. C. F. & Johnson, L. N. Trends biochem. Sci. 9, 147–151 (1984).

    Article  Google Scholar 

  34. Poorman, R. A., Randolph, A., Kempf, R. G. & Heinrikson, R. L. Nature 309, 467–469 (1984).

    Article  ADS  CAS  Google Scholar 

  35. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 1, 499–560 (1980).

    Article  CAS  Google Scholar 

  36. McLachlan, A. D. J. molec. Biol. 61, 409–424 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palm, D., Goerl, R. & Burger, K. Evolution of catalytic and regulatory sites in phosphorylases. Nature 313, 500–502 (1985). https://doi.org/10.1038/313500a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313500a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing