Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fetal occipital cortical neurons transplanted to the rostral cortex can extend and maintain a pyramidal tract axon

Abstract

In adult rats, cortical neurones that send axons through the pyramidal tract are confined to layer V, over the rostral two-thirds of the cerebral hemisphere1–3. However, during the first postnatal week, many neurones in layer V in the occipital cortex (including the visual cortex) also extend axon collaterals through the pyramidal tract and into the spinal cord2,4–6. These occipital corticospinal collaterals are completely eliminated over the subsequent 2 weeks6, although their cells of origin do not die2. We now report that when portions of the occipital cortex from fetal rats are transplanted to more rostral cortical regions of newborn rats, some of the transplanted neurones not only extend axons through the pyramidal tract, but also maintain these axons beyond the stage at which they are normally eliminated. These results suggest that normally-eliminated cortical axons can be ‘rescued’ and, in the case of pyramidal tract neurones, the position of the neurones within the tangential plane of the cortex is a critical factor in determining which neurones retain and which lose their pyramidal tract collaterals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wise, S. P., Murray, E. A. & Coulter, J. D. Neuroscience 4, 65–78 (1979).

    Article  CAS  Google Scholar 

  2. Stanfield, B. B., O'Leary, D. D. M. & Fricks, C. Nature 298, 371–373 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Bates, C. A. & Killackey, H. P. Devl Brain Res. 13, 265–273 (1984).

    Article  Google Scholar 

  4. Stanfield, B. B. & O'Leary, D. D. M. Soc. Neurosci. Abstr. 8, 438 (1982).

    Google Scholar 

  5. Stanfield, B. B. & O'Leary, D. D. M. Soc. Neurosci. Abstr. 9, 375 (1983).

    Google Scholar 

  6. Stanfield, B. B. & O'Leary, D. D. M. J. comp. Neurol. (submitted).

  7. Floeter, M. K. & Jones, E. G. J. Neurosci 4, 141–150 (1984).

    Article  CAS  Google Scholar 

  8. Rogers, A. W. Techniques of Autoradiography (Elsevier, Amsterdam, 1973).

    Google Scholar 

  9. Schreyer, D. J. & Jones, E. G. Neuroscience 7, 1837–1853 (1982).

    Article  CAS  Google Scholar 

  10. Bruckner, G., Mares, V. & Biesold, D. J. comp. Neurol. 166, 245–256 (1976).

    Article  CAS  Google Scholar 

  11. Lund, R. D., Mitchell, D. E. & Henry, G. H. Brain Res. 144, 169–172 (1978).

    Article  CAS  Google Scholar 

  12. Innocenti, G. M. & Frost, D. O. Nature 280, 231–234 (1979); Expl Brain Res. 39, 365–375 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Rhoades, R. W. & Dellacroce, D. D. Brain Res. 246, 146–149 (1982).

    Article  Google Scholar 

  14. Cusick, C. G. & Lund, R. D. J. comp. Neurol. 212, 385–398 (1982).

    Article  CAS  Google Scholar 

  15. Rothblat, L. A. & Hayes, L. L. Brain Res. 246, 146–149 (1982).

    Article  CAS  Google Scholar 

  16. Berman, N. E. & Payne, B. R. Brain Res. 274, 201–212 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Lund, R. D., Chang, F.-L. F. & Land, P. W. Devl Brain Res. 14, 139–142 (1984).

    Article  Google Scholar 

  18. Caviness, V. S. Jr & Yorke, C. H. J. comp. Neurol. 170, 449–460 (1976).

    Article  Google Scholar 

  19. Caviness, V. S. Jr & Rakic, P. A. Rev. Neurosci. 1, 279–326 (1978).

    Article  Google Scholar 

  20. Lemmon, V. & Pearlman, A. L. J. Neurosci. 1, 83–93 (1981).

    Article  CAS  Google Scholar 

  21. Simmons, P. A., Lemmon, V. & Pearlman, A. L. J. comp. Neurol. 211, 295–308 (1982).

    Article  CAS  Google Scholar 

  22. Terashima, T., Inoue, K., Inoue, Y., Mikoshiba, K. & Tsukada, Y. J. comp. Neurol. 218, 314–326 (1983).

    Article  CAS  Google Scholar 

  23. Jensen, K. F. & Killackey, H. P. Proc. natn. Acad. Sci. U.S.A. 81, 964–968 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L. & Woolsey, T. A. Brain Res. 37, 21–51 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanfield, B., O'Leary, D. Fetal occipital cortical neurons transplanted to the rostral cortex can extend and maintain a pyramidal tract axon. Nature 313, 135–137 (1985). https://doi.org/10.1038/313135a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313135a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing