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No pattern yet for snowflakes 
Attempts to model the growth of highly symmetrical crystal structures are most conspicuous for their 
failure. The urgent need is for truly cooperative models. 

THE problem of calculating the shapes of 
snowflakes persists. That is the simplest 
conclusion to be drawn from the best effort 
so far to apply to the growth of a crystal 
with intrinsic symmetry the theory of the 
growth of solid phases by the random ag
gregation of particles (atoms, say) in 
circumstances in which growth is limited by 
the speed of diffusion. For the numerical 
experiments carried out by Tamas Vicsek 
from the Institute of Technical Physics at 
Budapest, Hungary, but working last year 
at the physics department of Emory Uni
versity at Atlanta, Georgia, suggest that 
even in the simplest circumstances (the 
growth of a two-dimensional crystal on a 
square lattice), the underlying symmetry is 
only crudely represented in the shape of the 
crystal (Phys. Rev Lett. 53, 2281;1984). 
But Vicsek 's calculations do at least suggest 
what might next be tried. 

During the past two years, simulations of 
diffusion-limited aggregation have become 
extremely fashionable, partly because they 
are a natural way of generating fractal 
structures, partly because of the practical 
importance of the process. The now stand
ard way of carrying them out is concept
ually to take a finite piece of some lattice 
(for example, a piece of a square lattice a 
few hundred lattice intervals in each dir
ection), to suppose there is a nucleation 
somewhere in the lattice, to suppose that 
particles capable of joining a growing 
aggregate can enter the stage at random 
points on the periphery and then migrate 
through the lattice by means of a random 
walk from one point on the lattice to a 
nearest neighbour and then, finally, to 
suppose that such a particle will stay put 
once it reaches a lattice point adjacent 
either to the nucleation centre or to a point 
occupied by the growing aggregate based 
upon it. The model is simply if tediously 
calculated (but computer time mounts up 
to such an extent that nobody seems to 
have attempted a three-dimensional 
lattice). The simplest results are those most 
simply expected. Newly arriving particles 
stick at the places where they first 
encounter neighbours. The result is a 
randomly constructed network of particles 
which are less densely packed at the peri
phery than towards the centre, which is 
another way of describing a structure with 
fractal properties - the total mass (or 
number of particles in the aggregate) in
creases less quickly than the square of the 
linear dimension of the growing structure. 
The greater the distance from the nuclea-

tion centre, the fuller the whole structure is 
of nothing. 

The upshot of this kind of stimulation 
has so far been what might, on reflection, 
have been expected. The larger the central 
structure, the much greater the chance that 
it will intercept the random walk of a newly 
arriving particle. By the time the aggreg
ation has grown to fill a substantial pro
portion of the space set aside for it at the 
outset, the chances that the next random 
walk will yield a particle that sticks on the 
side it enters must be high. This is another 
way of saying that the simulatory system is 
less a good model of diffusion-limited 
aggregation as the aggregated structures 
grow. Perhaps practitioners in the field 
should scale their models to take account 
of this source of bias. 

The problem of geometrical symmetry is 
much more difficult, if only because it must 
involve physical considerations~ Vicsek 
seeks to solve the problem by changing the 
rules of aggregation on a simulated piece of 
lattice. First, he says, a randomly-walking 
particle must not stick whenever it comes 
next to an occupied site, but the probability 
that it will stick must be a function of some 
representation of the local curvature, most 
simply measured (by computers) as the 
ratio of occupied to unoccupied sites 
within some given distance. Second, the 
argument goes, it makes sense to allow 
newly arriving particles to relax to nearest
neighbour sites if the potential energy will 
thereby be decreased (or the number of 
nearest neighbours increased). 

The two modifications of the sticking 
rule that Vicsek introduces are not as 
simple-minded as they may seem. In the 
real world of solids and fluids, there is 
every reason why an aggregating particle's 
chance of sticking to a growing surface 
should depend on the most immediately 
local curvature, for which purpose a simple 
count of the immediately neighbouring 
sites which are occupied should be a good 
approximation to the Gibbs-Thomson 
macroscopic rule relating aggregation pro
bability to surface tension. That newly ag
gregated particles should relax to neigh
bouring lattice sites on a growing aggregate 
is also commonsensical; at the least, this 
may be a good simulation of what happens 
in a reality, the permanent sticking of new 
particles that reach energetically favoured 
sites, and the rapid solution (volatization) 
of particles that first stick elsewhere. 

The snag, in the sequence of four sim
ulations of growth on a two-dimensional 

square lattice reproduced with Vicsek 's 
paper, is that the outcome is far from being 
a structure with fourfold symmetry that 
would be expected. To be sure, there are 
signs of predominant growth in each of 
four axial directions, largely as a consequ
ence of the positive correlation between 
sticking and curvature, but there is no 
detailed simulation of the exquisite detail
ed rotational symmetry embodied in every 
other ice crystal (where the axis of ratation 
is, of course sixfold and not fourfold). 

Vicsek says in his conclusion that the 
outcome of his simulations is only qualitat
ive, which is fair enough. Nobody would 
pretend otherwise of a simulation of a real 
physical system in which only the 
interactions between nearest neighbours 
are counted as significant. The obvious · 
difficulty, of course, is that there can be 
very little hope of reaching better conclu
sions by taking account of next-nearest 
neighbours, or of further refinements of 
that kind. And a little reflection will show 
why no other conclusion is possible. The 
aggregation of particles onto a growing 
surface will be determined exclusively by 
local properties, among which surface 
tension and the opportunities for energetic
ally advantageous migration will be 
important. But the symmetry of a whole 
crystal, represented by the exquisite sixfold 
symmetry of the standard snowflake, must 
be the consequence of some cooperative 
phenomenon involving the growing crystal 
as a whole. What can that be? What can tell 
one growing face of a crystal (in three di
mensions this time) what the shape of the 
opposite face is like? Only the lattice 
vibrations which are exquisitely sensitive to 
the shape of the structure in which they 
occur (but which are almost incalculable if 
the shapes are not simply regular). 

What Vicsek seems therefore to have ac
complished is to have demonstrated the 
limitations of computer simulation in the 
representation of high crystal symmetry. 
The simple sticking rules of the model for 
diffusion-limited aggregation may serve 
well enough for dealing with the growth of 
amorphous particles (soot in the atmo
sphere, for example) but they are unlikely 
to throw much light on the reasons why so 
many simple crystal-growing operations 
yield such symmetrical structures. Back 
now in Budapest, Vicsek may feel inclined 
to think of adding the complexity of lattice 
vibrations to the problem of simple Ising 
lattice calculations. But if not him, then 
somebody. Please. Jobo Maddox 
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