Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polypeptide ligation occurs during post-translational modification of concanavalin A

Abstract

Lectins are proteins with multivalent carbohydrate-binding sites, which confer the ability to agglutinate. The seeds of legumes are particularly rich in lectins, for example, concanavalin A (Con A) comprises up to 15% of the protein in the cotyledons of jack bean (Canavalia ensiformis) seeds. The amino acid sequences of Con A and several other legume lectins have been partially or fully determined, and comparison of these sequences from different species reveals a circular homology1,2 (Fig. 1A); rearrangements within the genome have been suggested to explain this1,2. We report here that the circular homology displayed by Con A is due to a post-translational transposition and ligation within the initial poly-peptide. This type of modification has not been reported previously for eukaryotes, although it has been suggested to occur in bacteriophage λ (ref. 3).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hemperly, J. J. & Cunningham, B. A. Trends biochem. Sci. 8, 100–102 (1983).

    Article  CAS  Google Scholar 

  2. Foriers, A., Lebrun, E., van Rapenbusch, R., De Neve, R. & Strosberg, A. D. J. biol. Chem. 256, 5550–5560 (1981).

    CAS  PubMed  Google Scholar 

  3. Hendrix, R. W. & Casjens, S. R. Proc. natn. Acad. Sci. U.S.A. 71, 1451–1455 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Abe, Y., Iwabuchi, M. & Ishii, S-I. Biochem. biophys. Res. Commun. 45, 1271–1277 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Cunningham, B. A., Wang, J. L., Waxdal, M. J. & Edelman, G. M. J. biol. Chem. 250, 1503–1512 (1975).

    CAS  PubMed  Google Scholar 

  6. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Hemperly, J. J., Mostov, K. E. & Cunningham, B. A. J. biol. Chem. 257, 7903–7909 (1982).

    CAS  PubMed  Google Scholar 

  8. McDevitt, M. A., Imperiale, M. J., Ali, H. & Nevins, J. R. Cell 37, 993–999 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Spencer, D. Phil. Trans. R. Soc. B304, 275–285 (1984).

    Article  CAS  Google Scholar 

  10. Boulter, D. Phil. Trans. R. Soc. B304, 323–332 (1984).

    Article  CAS  Google Scholar 

  11. Laemmli, U. K. Nature 227, 680–684 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bridgen, J. FEBS Lett. 50, 159–162 (1975).

    Article  CAS  PubMed  Google Scholar 

  13. Laursen, R. A. Meth. Enzym. 47, 227–288 (1977).

    Google Scholar 

  14. Brauer, A. W., Margolies, M. M. & Haken, E. Biochemistry 14, 3029–3035 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Tarr, G. E., Beecher, J. F., Bell, M. & McKean, D. J. Analyt. Biochem. 84, 622–627 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Renart, J., Reiser, J. & Stark, G. R. Proc. natn. Acad. Sci U.S.A. 76, 3116–3120 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Bailey, D. S., Deluca, V., Durr, M., Verma, D. P. S. & Maclachlan, G. A. Pl. Physiol. 66, 1113–1118 (1980).

    Article  CAS  Google Scholar 

  18. Walker, J. E. et al. Eur. J. Biochem. 123, 253–260 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Scheele, G., Dobberstein, B. & Blobel, G. Eur. J. Biochem. 82, 593–599 (1978).

    Article  CAS  PubMed  Google Scholar 

  20. Goldman, B. M. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 75, 5066–5070 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Cordingley, J. S., Taylor, D. W., Dunne, D. W. & Butterworth, A. E. Gene 26, 25–39 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Buell, G. N., Wickens, M. P., Payvar, F. & Schimke, R. T. J. biol. Chem. 253, 2471–2482 (1978).

    CAS  PubMed  Google Scholar 

  23. Wickens, P. C., Buell, G. N. & Schimke, R. T. J. biol. Chem. 253, 2483–2495 (1978).

    CAS  PubMed  Google Scholar 

  24. Grunstein, M. & Wallis, J. Meth. Enzym. 68, 379–388 (1979).

    Article  CAS  PubMed  Google Scholar 

  25. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Sanger, F. & Coulson, A. R. FEBS Lett. 87, 107–110 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Murashige, T. & Skoog, F. Physiol. Pl. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrington, D., Auffret, A. & Hanke, D. Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature 313, 64–67 (1985). https://doi.org/10.1038/313064a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313064a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing