Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mechanism for magmatic accretion under spreading centres

Abstract

The most active volcanic zone on Earth occurs along the global mid-ocean ridge system where the lithosphere is pulled apart and new oceanic crust is created at rates between 10 and 200 km Myr−1. This volcanism is segmented, and is concentrated along the axial valleys and highs of slow- and fast-spreading ridges respectively, with transform fault zones separating, and generally offsetting, each active ridge segment. Volcanic activity may be nearly absent at the ridge transform intersection where a slow-spreading ridge is offset, and greatly reduced where a fast-spreading ridge is offset, implying thinner crust in these regions1. The source of magmas erupted along ocean ridges is the underlying mantle, which undergoes decompression melting when rising to fill the gap between the spreading plates. The resulting magma aggregates in the upper mantle and ascends to the crust due to its low density compared with the parent mantle rock. The melt is believed to pool in crustal magma chambers—whence it periodically erupts to the surface. Typically, the formation, ascent and aggregation of magmas along the mid-ocean ridges is regarded two-dimensionally and modelled in a section through the crust and mantle across the strike of the ridges (see ref. 2). Here, however, we consider the problem with a three-dimensional model for which we provide supporting geological evidence, in which the magmas rise as a result of a gravitational instability (modified Rayleigh–Taylor) in the underlying partial melt zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fox, P. & Gallo, D. G. Tectonophysics 104, 205–242 (1984).

    Article  ADS  Google Scholar 

  2. Ahern, J. L. & Turcotte, D. L. Earth planet. Sci. Lett. 45, 115–122 (1979).

    Article  ADS  Google Scholar 

  3. Whitehead, J. A. Jr & Luther, D. S. J. geophys. Res. 80, 705–717 (1975).

    Article  ADS  Google Scholar 

  4. Marsh, B. D. J. Geol. 87, 687–713 (1979).

    Article  ADS  Google Scholar 

  5. Marsh, B. D. Am. Scient. 62, 161–171 (1979).

    ADS  Google Scholar 

  6. Sigurdsson, H. & Sparks, S. Nature 274, 126–130 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Richter, F. M. & Pearsons, B. J. geophys. Res. 80, 2529–2541 (1975).

    Article  ADS  Google Scholar 

  8. Thayer, R. E., Bjornsson, A., Alvarez, L. & Hermance, J. F. Geophys. J. R. astr. Soc. 65, 423–442 (1981).

    Article  ADS  Google Scholar 

  9. Dick, H. J. B. & Fisher, R. L. in The Mantle and Crust-Mantle Relationships, Proc. 3rd. int. Kimberlite Conf. (ed. Kornprobst, J.) 295–308 (Elsevier, Amsterdam, 1984).

    Book  Google Scholar 

  10. Church, W. R. & Stevens, R. K. J. geophys. Res. 76, 1460–1466 (1971).

    Article  ADS  Google Scholar 

  11. Dick, H. J. B., Fisher, R. L. & Bryan, W. B. Earth planet. Sci. Lett, (in the press).

  12. Dick, H. J. B. & Bullen, T. Contr. Miner. Petrol. 86, 54–76 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Green, D. H. & Hibberson, W. Lithos 3, 209–221 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Schouten, H. & Klitgord, K. D. Earth planet. Sci. Lett. 59, 255–266 (1982).

    Article  ADS  Google Scholar 

  15. Schouten, H. & White, R. S. Geology 8, 175–179 (1980).

    Article  ADS  Google Scholar 

  16. Schouten, H. & Klitgord, K. D. Nature 303, 549–550 (1983).

    Article  ADS  Google Scholar 

  17. White, R. S. & Matthews, D. H. Geophys. J. R. astr. Soc. 61, 401–35 (1980).

    Article  ADS  Google Scholar 

  18. Sinha, M. C. & Louden, K. E. Geophys. J. R. astr. Soc. 75, 713–736 (1983).

    Article  ADS  Google Scholar 

  19. Mutter, J. C., Detrick, R. S. & NAT Study Group, Geology (in the press).

  20. Machado, A., Ludden, J. N., Brooks, C. & Thompson, G. Nature 295, 226–228 (1981).

    Article  ADS  Google Scholar 

  21. Ringwood, A. E. Composition and Petrology of the Earth's Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  22. Green, D. H., Hibberson, W. O. & Jaques, A. L. in The Earth: Its Origin, Structure and Evolution (ed. McElhinny, M. W.) 165–199 (Academic, New York, 1979).

    Google Scholar 

  23. Carter, J. L. Bull. geol. Soc. Am. 81, 2021–2034 (1970).

    Article  CAS  Google Scholar 

  24. Sigurdsson, H. J. geophys. Res. 86, 9483–9502 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitehead, J., Dick, H. & Schouten, H. A mechanism for magmatic accretion under spreading centres. Nature 312, 146–148 (1984). https://doi.org/10.1038/312146a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/312146a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing