Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rejection of transplantable AKR leukaemia cells following MHC DNA-mediated cell transformation

Abstract

Major histocompatibility complex (MHC) class I molecules can function as specific target antigens in T-cell-mediated cytotoxity 1,2. In addition, T cells can kill target cells through non-MHC antigens, for example, virally infected cells, if the target and effector cells express the same MHC class I antigens2. Consequently, quantitative and/or qualitative variations in the expression of the H–2/HLA antigens on the target cells could interfere with MHC-restricted immune reactions. We have reported that the AKR leukaemia cell line K36.16, a subline of K36 (ref. 3), on which the H–2Kk antigen cannot be detected, is resistant to T-cell lysis and grows very easily in AKR mice4. Other AKR tumour cell lines, like 369, which have a relatively large amount of H–2Kk on their surface, are easily killed by T cells in vitro and require a much larger inoculum to grow in vivo4. Monoclonal antibodies against H–2Kk, but not against H–2Dk, prevented the killing by T cells4,5. This suggests that some tumour cells grow in vivo because tumour-associated antigen(s) cannot be recognized efficiently by the host's immune system, due to the absence of MHC molecules which would function as restriction elements for T-cell cytotoxicity. We have tested this hypothesis by introducing the H-2Kk gene into the H–2Kk-deficient AKR tumour cell line K36.16 and have now demonstrated directly the biological relevance of H–2Kk antigen expression in the regulation of the in vivo growth of this tumour cell line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schreffler, D. C. & David, C. S. Adv. Immun. 20, 125–195 (1975).

    Article  Google Scholar 

  2. Zinkernagel, R. M. & Doherty, P. D. Adv. Immun. 27, 52–177 (1979).

    Google Scholar 

  3. Old, E. J., Boyse, E. A. & Stockert, E. Cancer Res. 25, 813–819 (1965).

    CAS  PubMed  Google Scholar 

  4. Festenstein, H. & Schmidt, W. Immun. Rev. 60, 85–127 (1981).

    Article  CAS  Google Scholar 

  5. Schmidt, W. & Festenstein, H. Immunogenetics 16, 257–264 (1982).

    Article  CAS  Google Scholar 

  6. Grosveld, F. G. et al. Nucleic Acids Res. 10, 6715–6732 (1982).

    Article  CAS  Google Scholar 

  7. Horbita, K. & Harris, A. W. Expl Cell Res. 60, 61–70 (1970).

    Article  Google Scholar 

  8. Baldani, P., Pogo, F., Gisselbrecht, S. & Komilsky, P. J. exp. Med. 158, 1294–1306 (1983).

    Article  Google Scholar 

  9. Eisenbach, L., Segal, S. & Feldman, M. Int. J. Cancer 32, 113–120 (1983).

    Article  CAS  Google Scholar 

  10. Gooding, L. R. J. Immun. 129, 1306–1312 (1982).

    CAS  PubMed  Google Scholar 

  11. Rogers, M. J., Gooding, L. R., Margulies, D. H. & Evans, G. A. J. Immun. 130, 2418–2422 (1983).

    CAS  PubMed  Google Scholar 

  12. Schrier, P. I., Bernards, R., Vaessen, R. T. M. J., Houweling, A. & van der Eb, A. J. Nature 305, 771–775 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Bernards, R. et al. Nature 305, 776–779 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Pierotti, M. A., Ballinaii, D., Colombo, M. P., Gragioli, L. & Parmiani, G. Transplantn Proc. 15, 2068–2073 (1983).

    CAS  Google Scholar 

  15. Oi, V., Jones, P. P., Goding, J. W. & Herzenberg, L. A. Curr. Topics Microbiol. Immun. 81, 115–129 (1978).

    CAS  Google Scholar 

  16. Ozata, K., Mayer, N. & Sachs, D. H. J. Immun. 124, 533–540 (1980).

    Google Scholar 

  17. Kohler, G., Fischer Lindahl, K. & Hensser, C. Immune System 2, 202–208 (1981).

    Google Scholar 

  18. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  19. Weaver, R. F. & Weissmann, C. Nucleic Acids Res. 7, 1175–1193 (1979).

    Article  CAS  Google Scholar 

  20. Wigler, M. et al. Cell 16, 777–785 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, K., Grosveld, F. & Festenstein, H. Rejection of transplantable AKR leukaemia cells following MHC DNA-mediated cell transformation. Nature 311, 750–752 (1984). https://doi.org/10.1038/311750a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311750a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing