Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of paternal and maternal genomes in mouse development

Abstract

There has been much speculation on whether mammalian eggs with two male pronuclei can develop normally. Eggs with two female pronuclei can sometimes develop as far as the 25-somite stage1–3 but with only very meagre extraembryonic tissues2,3. We suggested that the genome undergoes specific imprinting during gametogenesis3 and that some paternal genes may be necessary for normal development of the extraembryonic tissues3,4, in which only the maternal X chromosome remains active5–9. However, the need for the maternal genome for development to term is not yet unequivocally established. The detailed study described here demonstrates that while between 40 and 50% of heterozygous reconstituted eggs with a male and a female pronucleus develop to term, none of the eggs with two male pronuclei does so. Furthermore, embryos in the latter case are very retarded, even though the trophoblast develops relatively well compared with embryos having two female pronuclei1–3. Our combined results indicate that while the paternal genome is essential for the normal development of extraembryonic tissues, the maternal genome may be essential for some stages of embryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kaufman, M. H., Barton, S. C. & Surani, M. A. H. Nature 265, 53–55 (1977).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Surani, M. A. H. & Barton, S. C. Science 222, 1034–1036 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Surani, M. A. H., Barton, S. C. & Norris, M. L. Nature 308, 548–550 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wakasugi, N. J. Reprod. Fert. 41, 85–96 (1974).

    Article  CAS  Google Scholar 

  5. West, J. D., Frels, W. I., Chapman, V. M. & Papaioannou, V. E. Cell 12, 873–882 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Takagi, N., Wake, N. & Sasaki, M. Cytogenet. Cell Genet. 20, 240–248 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Harper, M. I., Fosten, M. & Monk, M. J. Embryol. exp. Morph. 67, 127–135 (1982).

    CAS  PubMed  Google Scholar 

  8. Morris, T. Genet. Res. 12, 125–135 (1968).

    Article  CAS  PubMed  Google Scholar 

  9. Hoppe, P. C. & Illmensee, K. Proc. natn. Acad. Sci. U.S.A. 74, 5657–5661 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Hoppe, P. C. & Illmensee, K. Proc. natn. Acad. Sci. U.S.A. 79, 1912–1916 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Modlinski, J. A. J. Embryol. exp. Morph. 60, 153–161 (1980).

    CAS  PubMed  Google Scholar 

  12. Markert, C. L. J. Hered. 73, 390–397 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Gulyas, B. J., Wood, M. & Whittingham, D. G. Devl Biol. 101, 246–250 (1984).

    Article  CAS  Google Scholar 

  14. Gardner, R. L. & Papaioannou, V. E. in The Early Development of Mammals (eds Balls, M. & Wild, A. E.) 107–132 (Cambridge University Press, 1975).

    Google Scholar 

  15. Bagshawe, K. D. & Lawler, S. D. Br. J. Obstet. Gynaec. 89, 255–257 (1982).

    Article  CAS  Google Scholar 

  16. Johnson, D. R. Genetics 76, 795–805 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McLaren, A. in Maternal Effects in Development (eds Newth, D. R. & Balls, M.) 287–320 (Cambridge University Press, 1979).

    Google Scholar 

  18. McGrath, J. & Solter, D. Nature 308, 550–551 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. McGrath, J. & Solter, D. Cell 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Whittingham, D. G. & Wales, R. G. Aust. J. biol. Sci. 22, 1065–1072 (1969).

    Article  CAS  PubMed  Google Scholar 

  21. Whittingham, D. G. J. Reprod. Fert. Suppl. 14, 7–21 (1971).

    CAS  Google Scholar 

  22. McGrath, J. & Solter, D. Science 220, 1300–1302 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Neff, J. M. & Enders, J. F. Proc. Soc. exp. Biol. Med. 127, 260–271 (1968).

    Article  CAS  PubMed  Google Scholar 

  24. Giles, R. E. & Ruddle, F. H. In Vitro 9, 103–118 (1973).

    Article  CAS  PubMed  Google Scholar 

  25. Graham, C. F. Acta endocr. Suppl. 153, 154–167 (1971).

    Article  CAS  Google Scholar 

  26. Chapman, V. M., Whitten, W. K. & Ruddle, F. H. Devl Biol. 26, 153–161 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, S., Surani, M. & Norris, M. Role of paternal and maternal genomes in mouse development. Nature 311, 374–376 (1984). https://doi.org/10.1038/311374a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311374a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing