Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin

Abstract

DNA sequences, important for the control of Drosophila heat shock gene expression, are packaged in chromatin in a nuclease hypersensitive configuration1. Recently, two protein-binding (exonuclease-resistant) sites which cover the TATA box sequence and an upstream control element were shown to occur in vivo amidst the 5′ terminal hypersensitive regions of several heat shock genes2. Protein-binding at the TATA box is independent of heat shock, but the binding at the upstream element is heat shock dependent, and it was proposed that a heat shock activator protein, HAP, positively regulates the genes2. Here, I report the detection of HAP activity in heat shocked cell extracts by reconstituting specific binding to hsp82 gene chromatin in vitro. Inhibition of the binding by free DNA from the 5′ region of heat shock genes implies a coordinate regulation of the gene family through HAP interaction with the upstream heat shock consensus sequence3. Furthermore, the special ease of induction of the hsp82 gene over other heat shock genes can be explained in molecular terms by the higher affinity of HAP for the hsp82 binding site, which contains a 28 base sequence with almost perfect dyad symmetry, GAAGCCTCTAGAAG|TTTCTAGAGACTTC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wu, C. Nature 286, 854–860 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Wu, C. Nature 309, 229–234 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Pelham, H. R. B. Cell 30, 517–528 (1982).

    Article  CAS  Google Scholar 

  4. Holmgren, R., Livak, K., Morimoto, R., Freund, R. & Meselson, M. Cell 18, 1359–1370 (1979).

    Article  CAS  Google Scholar 

  5. Holmgren, R., Corces, V., Morimoto, R., Blackman, R. & Meselson, M. Proc. natn. Acad. Sci. U.S.A. 78, 3775–3778 (1981).

    Article  ADS  CAS  Google Scholar 

  6. O'Connor, D. & Lis, J. T. Nucleic Acids Res. 9, 5075–5092 (1981).

    Article  CAS  Google Scholar 

  7. Hackett, R. W. & Lis, J. T. Nucleic Acids Res. 11, 7011–7030 (1983).

    Article  CAS  Google Scholar 

  8. Blackman, R. K. thesis, Harvard Univ. (1983).

  9. Storti, R. V., Scott, M. P., Rich, A. & Pardue, M. L. Cell 22, 825–834 (1980).

    Article  CAS  Google Scholar 

  10. Lindquist, S. Devl Biol. 77, 463–479 (1980).

    Article  CAS  Google Scholar 

  11. Buzin, C. M. and Petersen, N. S. J. molec. Biol. 158, 181–201 (1982).

    Article  CAS  Google Scholar 

  12. Spradling, A., Pardue, M. L. & Penman, S. J. molec. Biol. 109, 559–587 (1977).

    Article  CAS  Google Scholar 

  13. Ashburner, M. Chromosoma 31, 356–376 (1970).

    Article  CAS  Google Scholar 

  14. Emerson, B. M. & Felsenfeld, G. Proc. natn. Acad. Sci. U.S.A. 81, 95–99 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Jack, R. S., Gehring, W. J. & Brack, C. Cell 24, 321–331 (1981).

    Article  CAS  Google Scholar 

  16. Compton, J. L. & Bonner, J. J. Cold Spring Harb. Symp. quant. Biol. 42, 835–838 (1978).

    Article  Google Scholar 

  17. Compton, J. L. & McCarthy, B. J. Cell 14, 191–201 (1979).

    Article  Google Scholar 

  18. Bonner, J. J. Devl Biol. 86, 409–418 (1981).

    Article  CAS  Google Scholar 

  19. Craine, B. L. & Kornberg, T. Cell 25, 671–681 (1981).

    Article  CAS  Google Scholar 

  20. Parker, C. S. & Topol, J. Cell 37, 273–283 (1984).

    Article  CAS  Google Scholar 

  21. Dignam, A. D., Martin, P. L., Shastry, B. S. & Roeder, R. G. Meth. Enzym. 101, 582–598 (1983).

    Article  CAS  Google Scholar 

  22. McKenzie, S. L., Henikoff, S. & Meselson, M. Proc. natn. Acad. Sci. U.S.A. 72, 1117–1121 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Lifton, R. P., Goldberg, M. L., Karp, R. W. & Hogness, D. S. Cold Spring Harb. Symp. quant. Biol. 42, 1047–1051 (1978).

    Article  CAS  Google Scholar 

  24. Holmgren, R. thesis, Harvard Univ. (1980).

  25. Craig, E. A. & McCarthy, B. J. Nucleic Acids Res. 8, 4441–4457 (1980).

    Article  CAS  Google Scholar 

  26. Corces, V., Holmgren, R., Freund, R., Morimoto, R. & Meselson, M. Proc. natn. Acad. Sci. U.S.A. 77, 5390–5393 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Ingolia, T. D. & Craig, E. A. Nucleic Acids Res. 9, 1627–1642 (1981).

    Article  CAS  Google Scholar 

  28. Southgate, R., Ayme, A. & Voellmy, R. J. molec. Biol. 165, 35–57 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C. Activating protein factor binds in vitro to upstream control sequences in heat shock gene chromatin. Nature 311, 81–84 (1984). https://doi.org/10.1038/311081a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311081a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing