Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein

Abstract

Alteration in gene structure has been shown to occur in some human tumours1–5. These altered genes, termed oncogenes, were originally identified by their ability to induce foci of transformed cells on transfected mouse 3T3 cultures. The oncogene identified in the EJ/T24 human bladder carcinoma is similar to the transforming gene of BALB and Harvey murine sarcoma virus (MSV)6,7 and differs from its counterpart in normal cells by a single amino acid8. All three of these Ha-ras genes direct the production of similar proteins (p21). While the ras gene appears to be involved in tumour formation in some situations, its role is unclear. The ras protein product (p21) binds guanine nucleotides and has a unique autophosphorylating activity9–12, but no other enzymatic activity has been found. We report here the injection of purified Ha-ras p21 protein13–16, made in Escherichia coli from the gene of BALB-MSV, into NIH 3T3 cells and show that the purified protein itself is sufficient to induce a transformed morphology. In addition, the injected protein stimulates quiescent cells to enter the S-phase of the cell cycle. This result clearly demonstrates that the ras gene functions directly through the protein product. It also establishes an assay for the protein which depends on its activity within a living cell. The transforming activity of a p21 ras protein equivalent to the product of the normal cellular ras gene, is also demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldfarb, M., Shimizu, K., Perucho, M. & Wigler, M. Nature 296, 404–409 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Tabin, C. et al. Nature 300, 143–149 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Reddy, E. P., Reynolds, R. K., Santos, E. & Barbacid, M. Nature 300, 149–152 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Yuasa, Y. et al. Nature 303, 775–779 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Sukumar, S., Notario, V., Martin-Zanca, D. & Barbacid, M. Nature 306, 658–661 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Bishop, J. M. A. Rev. Biochem. 52, 301–354 (1983).

    Article  CAS  Google Scholar 

  7. Cooper, G. M. Science 217, 801–806 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Capon, D. J., Chen, E. Y., Levinson, A. D., Seeburg, P. H. & Goeddel, D. V. Nature 302, 33–37 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Scolnick, E. M., Papageorge, A. G. & Shih, T. Y. Proc. natn. Acad. Sci. U.S.A. 76, 5355–5359 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Shih, T. Y., Papageorge, A. G., Stokes, P. E., Weeks, M. D. & Scolnick, E. M. Nature 287, 686–691 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Papageorge, A., Lowy, D. & Scolnick, E. M. J. Virol. 44, 509–519 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shih, T., Stokes, P., Smythes, G., Dhar, R. & Oroszzlan, S. J. biol. Chem. 257, 11767–11773 (1982).

    CAS  PubMed  Google Scholar 

  13. Ellis, R. W. et al. Nature 292, 506–511 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Andersen, P. R. et al. Cell 26, 129–134 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Dhar, R. et al. Science 217, 934–937 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Lacal, J. C. et al. Proc. natn. Acad. Sci. U.S.A. (in the press).

  17. Stacey, D. W. & Allfrey, V. G. Cell 9, 725–732 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Chang, E. H., Furth, M., Scolnick, E. & Lowy, D. Nature 297, 479–483 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Stacey, D. W. & Allfrey, V. G. J. Cell Biol. 75, 807–817 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Stacey, D. W. in Introduction of Macromolecules into Viable Mammalian Cells (eds. Baserga, R., Croce, C. & Rovera, G.) 125–134 (Liss, New York, 1980).

    Google Scholar 

  21. Mercer, W. E., Avignolo, C. & Baserga, R. Molec cell. Biol. 4, 276–281 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stacey, D. W. Meth. Enzym. 79, 76–88 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacey, D., Kung, HF. Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 310, 508–511 (1984). https://doi.org/10.1038/310508a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310508a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing