Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Development of X- and Y-cell retinogeniculate terminations in kittens

Abstract

The cat retinogeniculocortical pathways are organized chiefly into two parallel independent neuronal streams, one involving X-cells of the retina and lateral geniculate nucleus, and the other, Y-cells1,2. Development of the Y-cell pathway is more seriously affected by visual deprivation than is the X-cell pathway2,3 and we reasoned that some insight into the underlying mechanisms of these effects could be gained from studies of normal development. We therefore injected horseradish peroxidase into physiologically identified X- and Y-cell retinogeniculate axons to examine the postnatal development of their terminations in kittens. As we report here, at 3–4 weeks of age, most optic tract axons can be identified physiologically as members of the X- or Y-cell class. X-cell terminal fields in lamina A or Al are wider at 3–4 weeks than they are in adults, while Y-cell terminal fields are narrower than in adults4,5. During the second and third postnatal months, X-cell terminal arbors progressively contract while Y-cell arbors expand so that, by 12 weeks of age, the adult pattern is seen. These data, and the results of our earlier study of the effects of monocular lid suture on these terminal arbors3, suggest that enlargement of Y-cell terminations in geniculate lamina A or Al during development may be accompanied by competitive pruning of X-cell terminations within these same laminae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stone, J., Dreher, B. & Leventhal, A. Brain Res. Rev. 1, 345–394 (1979).

    Article  Google Scholar 

  2. Sherman, S. M. & Spear, P. D. Physiol. Rev. 62, 738–855 (1982).

    Article  CAS  Google Scholar 

  3. Sur, M., Humphrey, A. L. & Sherman, S. M. Nature 300, 183–185 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Sur, M. & Sherman, S. M. Science 218, 389–391 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Bowling, C. B. & Michael, D. R. Nature 286, 899–902 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Daniels, J. D., Pettigrew, J. D. & Norman, J. L. J Neurophysiol. 41, 1373–1393 (1978).

    Article  CAS  Google Scholar 

  7. Wilson, J. R., Tessin, D. E. & Sherman, S. M. J Neurosci. 2, 562–571 (1982).

    Article  CAS  Google Scholar 

  8. Friedlander, M. J., Lin, C.-S., Stanford, L. R. & Sherman, S. M. J. Neurophysiol. 46, 80–129 (1981).

    Article  CAS  Google Scholar 

  9. Hoffmann, K.-P., Stone, J. & Sherman, S. M. J Neurophysiol. 35, 518–531 (1972).

    Article  CAS  Google Scholar 

  10. Hochstein, S. & Shapley, R. M. J. Physiol., Lond. 262, 237–264 (1976).

    Article  CAS  Google Scholar 

  11. Adams, J. C. Neuroscience 2, 141–145 (1977).

    Article  CAS  Google Scholar 

  12. Mangel, S. C., Wilson, J. R. & Sherman, S. M. J. Neurophysiol. 50, 240–262 (1983).

    Article  CAS  Google Scholar 

  13. Hamasaki, D. I. & Sutija, V. G. Expl Brain Res. 35, 9–23 (1979).

    CAS  Google Scholar 

  14. Cleland, B. G. & Levick, W. R. J. Physiol., Lond. 240, 421–456 (1974).

    Article  CAS  Google Scholar 

  15. Rusoff, A. C. & Dubin, M. W. J. Neurophysiol. 40, 1188–1198 (1977).

    Article  CAS  Google Scholar 

  16. Friedlander, M. J., Vahle-Hinz, C. & Martin, K. A. C. Invest. ophthal. vis. Sci. (ARVO Abstr.) 24, Suppl. 138 (1983).

    Google Scholar 

  17. Mason, C. A. Neuroscience 7, 541–559 (1982).

    Article  CAS  Google Scholar 

  18. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  19. Walsh, C., Policy, E. H. & Hickey, T. L. Nature 302, 611–614 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Torrealba, F. Guillery, R. W., Eysel, U., Polley, E. H. & Mason, C. A. J. comp. Neurol. 211, 377–396 (1982).

    Article  CAS  Google Scholar 

  21. Purves, D. & Lichtman, J. R. Science 210, 153–157 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Shatz, C. J. J. Neurosci. 3, 482–499 (1983).

    Article  CAS  Google Scholar 

  23. Sretavan, D. W. & Shatz, C. J. Nature 308, 845–848 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sur, M., Weller, R. & Sherman, S. Development of X- and Y-cell retinogeniculate terminations in kittens. Nature 310, 246–249 (1984). https://doi.org/10.1038/310246a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310246a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing