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Cyclosporine-A-mediated inhibition of p-glycoprotein increases

methylprednisolone entry into the central nervous system

CM Bernards*,1,2

1Department of Anesthesiology, Virginia Mason Medical Center, University of Washington, Seattle, WA, USA;
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Study design: Prospective, randomized, pharmacokinetic study.
Objective: To determine if cyclosporine-A-mediated inhibition of p-glycoprotein would
increase methylprednisolone entry into the central nervous system thereby permitting
a reduction in the systemic methylprednisolone dose.
Setting: Department of Anesthesiology, University of Washington, Seattle, USA.
Methods: Microdialysis probes were used to obtain cerebrospinal fluid and gluteal muscle
extracellular fluid samples for measurement of methylprednisolone concentration in pigs.
At time zero, a methylprednisolone bolus was given and an infusion started. At 210min, after
reaching a stable methylprednisolone concentration, a cyclosporine-A bolus was given (either 10
or 30mg/kg) and microdialysis samples collected until 420min. Plasma samples were collected
at 10, 30min and then every 30min until the study’s end.
Results: Cyclosporine-A bolus produced a dose-dependant increase in methylprednisolone
concentration in plasma, muscle and cerebrospinal fluid. Importantly, the magnitude of the
increase in cerebrospinal fluid was significantly greater than the increase in plasma and muscle.
Conclusions: The relatively greater increase in cerebrospinal fluid concentrations of methyl-
prednisolone is consistent with increased penetration of the blood–brain barrier secondary to
cyclosporine-mediated p-glycoprotein inhibition. Theoretically, increased methylprednisolone
entry into the central nervous system should allow a reduction in the systemic methylpredni-
solone dose and a consequent decrease in glucocorticoid-mediated side effects.
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Introduction

High-dose methylprednisolone begun within 8 h
of spinal cord injury has been shown to improve
neurological function.1–4 However, its use is also
associated with a significant increase in complications
related to systemic immunosuppression. Specifically, the
incidence of wound infection, sepsis, pneumonia, and
the duration of intensive care unit stay are all increased
in patients receiving high-dose methylprednisolone.5–8

Importantly, some methylprednisolone-mediated mor-
bidities/side effects put patients at increased risk of
complications known to contribute to secondary neu-
rological injury (eg, sepsis-induced hypotension,9–11

glucocorticoid-medicated hyperglycemia12). Conse-
quently, methylprednisolone-related side effects may
actually work at crosspurposes to any salutary neuro-
logical benefits of methylprednisolone therapy.
We have previously shown that methylprednisolone

entry into the central nervous system is actively opposed
by p-glycoprotein,13 an active transporter present on the
surface of capillary endothelial cells within the central
nervous system and an important component of
the blood–brain barrier.14,15 Thus, when targeting
the central nervous system, very large systemic doses
of methylprednisolone must be administered to over-
whelm p-glycoprotein’s transport capacity and achieve
therapeutic concentrations in the spinal cord.
With this in mind, one approach to improving the

therapeutic index for methylprednisolone therapy would
be to improve its entry into the central nervous system
by blocking p-glycoprotein. Improved entry into
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the central nervous system would allow a reduction in
the systemic methylprednisolone dose necessary to
achieve therapeutic concentrations in the spinal cord
and would decrease the risk of immunosuppressive side
effects.
The goal of this study was to demonstrate just such

a pharmacologic approach to improving the therapeutic
index for systemic methylprednisolone therapy.
To achieve this goal, we examined the effect of
cyclosporine-A, a prototypical competitive inhibitor of
p-glycoprotein, on methylprednisolone concentrations
in plasma, cerebrospinal fluid and muscle.

Materials and methods

All studies were approved by the University of
Washington Institutional Animal Care and Use
Committee. Guidelines of the Association for Assess-
ment and Accreditation of Laboratory Animal Care
were followed throughout.
Farm-bred, mixed-breed, pigs of both genders weigh-

ing 14.072.6 kg were used. Animals were housed in
rooms with 12 h light–dark cycles and given twice daily
feedings of pig chow (Purina, St Louis, MO, USA) and
ad libitum access to water.

Surgical preparation
On the study day, anesthesia was induced by mask
inhalation of isoflurane (4–5%) in oxygen and the
animals were orotracheally intubated after muscle
relaxation by intramuscular succinylcholine (100mg).
Anesthesia was maintained with isoflurane (1.5–2%) in
oxygen and the animals were mechanically ventilated to
maintain end-tidal CO2 at 36–38mmHg (Datex Airway
Gas Analyzer Type GAO, Datex, Helsinki, Finland).
Femoral arterial and venous cannulae were placed via
cutdown for arterial pressure monitoring, blood sam-
pling, maintenance fluid administration (normal saline
at 4ml/kg/h) and study drug administration. Muscle
relaxation was maintained by adding pancuronium
bromide to the maintenance fluid infusion (1mg/ml).
To permit placement of custom made microdialysis

probes into the cerebrospinal fluid, the L5, L1, and T9
lamina were exposed and a small (2–3mm) laminotomy
was made to reveal the dura mater. A 1–2mm hole
was incised in the dura and arachnoid maters and
a microdialysis probe was inserted into the cerebrospinal
fluid. The dialysis probes were fixed in place
by cyanoacrylate glue and dental acrylic was used to
seal the laminotomies. Mock cerebrospinal fluid (NaCl
140mEq, NaHCO3 25mEq, KCl 2.9mEq, MgCl2
0.4mEq, urea 3.5mEq, glucose 4.0mEq, and CaCl2
2.0mEq; pH 7.38–7.42; 295mOsm) was pumped
through the dialysis probes at 10 ml/min.
In addition to the dialysis probes placed in the

cerebrospinal fluid, a probe was also placed percuta-
neously in a gluteal muscle. Since muscle capillaries do
not express p-glycoprotein, this sample site served as
a control to distinguish p-glycoprotein-related effects

of cyclosporine-A from non-p-glycoprotein-related
effects.

Microdialysis probe manufacture
Custom loop microdialysis probes were made as
previously described.13,16–18 Briefly, the probes were
made from cellulose dialysis fibers (Spectrum Medical
Industries Inc., Houston, TX, USA) with a 215 mm
inside diameter, a 235 mm outside diameter, and a
molecular weight cutoff of 6000Da. Epoxy cement was
used to coat all but the center 20mm of the dialysis fiber,
thus creating a 20mm ‘dialysis window’. The epoxy was
spread evenly by running a 2 cm length of PE-10 tubing
over the fiber while the epoxy was still wet. After the
epoxy had cured, a 90 mm diameter tungsten wire
(Hamilton Company, Reno, NV, USA) was placed in
the lumen of the dialysis probe and the probe bent in
half. The wire allowed the probe to be bent without
occluding the lumen. A silicone elastomer was spread in
the shape of a cone at the base of the probe; this served
to plug the hole in the meninges through which the
probe was inserted. The probes were allowed to ‘cure’
for 24 h before use and all probes were used within 72 h
of manufacture.

Study paradigm
Following surgical preparation, the animals received
a 2.7mg/kg methylprednisolone bolus followed imme-
diately by a 2.7mg/kg/h continuous infusion of methyl-
prednisolone. This infusion continued throughout
the 420min of the study. At the 210min point, in a
randomized fashion, the animals received either a 10 or
a 30mg/kg bolus of cyclosporine-A.
Dialysate was collected continuously as 10min

samples (ie, 100 ml) from all four microdialysis probes.
Arterial blood samples (3ml) were collected at time 0,
10, and 30min and then every 30min for the remainder
of the study.

Drug assays
Dialysate (40 ml) was mixed with 20 ml of internal
standard (fluoxymesterone 1 ng/ml) and placed in an
autosampler vial. A 50 ml portion of this sample was
injected on the HPLC.
Plasma samples (0.5ml) were placed in a silanized

13� 100 screw-cap culture tube and 20 ml of internal
standard (fluoxymesterone 35 ng/ml) and 4ml of methy-
lene chloride were added. The samples were vortexed,
the aqueous layer discarded, and 1.5ml of 0.1N NaOH
and 1.5ml of deionized water was added. The samples
were vortexed, the tubes centrifuged and the aqueous
layer again discarded. The methylene chloride phase was
decanted into a clean silanized culture tube and
evaporated under a stream of air at 401C. The residue
was dissolved in 100 ml of HPLC mobile phase and
filtered using a 0.2 mm nylon centrifuge filter. A 50 ml
portion was injected on the HPLC.
The HPLC consisted of a Hewlett Packard 1050 series

with autosampler, pump, and UV detector. The column
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was a Supelco LC-18-DB 150mm� 4.6mm� 5 mm. The
mobile phase consisted of 65% 10mM potassium
phosphate mono-basic and 35% acetonitrile pumped
at 1ml/min. The peaks are detected at 242 nm.
Quantification is based upon peak height ratios between
methylprednisolone and the internal standard, plotted
as a linear regression.
The interday coefficient of variation was 5–7%

and the limits of quantitation were 5 ng/ml for plasma
and 10 ng/ml for dialysate.

Statistical analysis
Steady-state methylprednisolone concentrations in
blood, cerebrospinal fluid dialysate and gluteal muscle
dialysate were determined by averaging the concentra-
tion present in samples collected over the hour before
the cyclosporine bolus (ie, between 150 and 210min).
Steady-state methylprednisolone concentration after
the cyclosporine-A bolus was determined by averaging
the concentration present in dialysate and blood samples
collected over the final hour of the study (ie, between
360 and 420min). These steady-state concentrations
were used for all comparisons of methylprednisolone
concentration within and between sampling sites.
The statistical significance of the change in steady-

state methylprednisolone concentration within each
sample site after cyclosporine-A administration was
determined by paired t-test. Differences between sam-
pling sites in the magnitude of the change in methyl-
prednisolone concentration was determined by analysis
of variance. A P-value o0.05 was considered statisti-
cally significant. Data are reported as mean7SD.

Results

Figure 1a and b shows the raw concentration versus
time data for both the 10 and 30mg/kg cyclosporine
groups. Differences in methylprednisolone concentra-
tions among plasma, muscle, and cerebrospinal fluid
sampling sites were all statistically significant with the
highest concentrations in plasma and the lowest in
cerebrospinal fluid. Figure 2a and b shows the same data
normalized for the methylprednisolone concentration at
the time that the cyclosporine-A bolus was administered.
The coefficient of variation of the eight microdialysis

samples used to calculate steady-state cerebrospinal
fluid methylprednisolone concentrations for each animal
between 150–210 and 360–420min averaged 8.575.0%.
The eight microdialysis samples used to calculate steady-
state muscle methylprednisolone concentrations for
each animal during the same time periods averaged
10.975.6%. The three plasma samples used to calculate
steady-state methylprednisolone concentrations for
each animal during the same time periods averaged
7.977.0%. These small coefficients of variation are
comparable to the interday variability in the reprodu-
cibility of the methylprednisolone assay and indicate
that drug concentrations were steady over the time
periods analyzed.

Both cyclosporine doses produced statistically sig-
nificant increases in methylprednisolone concentration
in muscle, plasma and all cerebrospinal fluid sampling

Figure 1 (a) Methylprednisolone concentration in cerebrosp-
inal fluid dialysate, muscle dialysate, and plasma before and
after 10mg/kg cyclosporine bolus administered at time-
210min. Plasma concentrations were significantly greater than
muscle concentrations, which were significantly greater than
CSF concentrations. (b) Methylprednisolone concentration in
cerebrospinal fluid dialysate, muscle dialysate, and plasma
before and after 30mg/kg cyclosporine bolus administered at
time¼ 210min. Plasma concentrations were significantly
greater than muscle concentrations which were significantly
greater than CSF concentrations
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sites. At all sampling sites, the magnitude of the increase
in methylprednisolone concentration was significantly
greater for the 30mg/kg cyclosporine-A dose than for
the 10mg/kg dose (Table 1).

Importantly, the percentage increase in methylpred-
nisolone concentration in cerebrospinal fluid compart-
ments following cyclosporine-A was significantly greater
than the simultaneous percentage increase in the plasma
concentration of methylprednisolone (Figure 3; Table 1).
This was true for both cyclosporine-A doses. In
contrast, the percentage increase in methylprednisolone
concentration in muscle was not different than the
simultaneous percentage increase in the plasma concen-
tration of methylprednisolone at either cyclosporine-A
dose (Figure 3; Table 1).

Discussion

We have previously shown that methylprednisolone
entry into the CNS is opposed by p-glycoprotein
expressed by capillary endothelial cells of the blood–

Figure 2 (a) Relative methylprednisolone concentration in
cerebrospinal fluid dialysate (L4 level), muscle dialysate, and
plasma before and after 10mg/kg cyclosporine bolus adminis-
tered at time¼ 210min. Methylprednisolone concentrations
are expressed as a fraction of the concentration present in the
sample collected at each site at the time of the cyclosporine
bolus. (b) Relative methylprednisolone concentration in
cerebrospinal fluid dialysate (L4 level), muscle dialysate, and
plasma before and after 30mg/kg cyclosporine bolus adminis-
tered at time¼ 210min. Methylprednisolone concentrations
are expressed as a fraction of the concentration present in the
sample collected at each site at the time of the cyclosporine
bolus

Table 1 Effect of cyclosporine on steady-state methylpredni-
solone concentrations

10mg/kg

Methylprednisolone concentration (ng/ml)

Sample site
Pre-

cyclosporine
Post-

cyclosporine % Increase

Plasma 14957357 18597461* 25+16
Muscle 35.677 42.6719* 21719
CSF L4 2178 2879* 41741a

L1 2478 31710* 36738a

T9 29713 37719* 35729a

30mg/kg

Plasma 14947302 25997870* 72731
Muscle 48714 86720* 79725
CSF L4 31716 63722.4* 114751a

L1 35714 72729* 111756a

T9 36714 66728* 106749a

*Po0.05 compared to pre-cyclosporine for that sample site
aThe percentage increase in methylprednisone concentrations
is significantly greater then the simultaneous percentage
increase in methylprednisolone concentration in plasma
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brain/spinal cord barrier.13 Our finding in this study
that, prior to cyclosporine administration, methylpred-
nisolone concentrations in muscle (which does not
express p-glycoprotein) exceed simultaneous concentra-
tions in CSF is consistent with this earlier observation.
In addition, our finding that cyclosporine-A produced
a greater percentage increase in cerebrospinal fluid
concentrations of methylprednisolone than occurred in
plasma or muscle suggests that p-glycoprotein inhibition
is an effective method to increase methylprednisolone
delivery to the CNS.
However, the increase in cerebrospinal fluid methyl-

prednisolone concentration that resulted from cyclos-
porine-A was not solely the result of p-glycoprotein
inhibition. Cyclosporine-A also increased plasma con-
centrations of methylprednisolone. The increase in
methylprednisolone plasma concentration likely resulted
from inhibition of hepatic metabolism of methylpredni-
solone by cytochrome P450-3A4.19 Most p-glycoprotein
inhibitors, including cyclosporine-A, are also competi-
tive cytochrome P450-3A4 inhibitors. In fact, some
investigators consider the two proteins to act in a
coordinated and synergistic fashion within some tissues
(eg, gastrointestinal epithelium, hepatocytes) to limit
absorption or promote elimination of a large number of
molecules.20–22

The cyclosporine-mediated increase in methylpredni-
solone plasma concentration produced a comparable
increase in methylprednisolone concentration in muscle
(Figure 3). Since muscle does not express p-glycopro-
tein, and therefore does not actively exclude methyl-

prednisolone, one would expect methylprednisolone
concentrations in muscle to parallel those in plasma,
which is what was found. In contrast, within the
cerebrospinal fluid the increase in methylprednisolone
concentration following cyclosporine-A bolus was
significantly greater than can be explained by the
simultaneous plasma methylprednisolone increase
(Figure 2).
The relatively greater increase in cerebrospinal fluid

methylprednisolone concentration compared to the
increase in plasma concentration can best be explained
by a reduction in the barrier to methylprednisolone
entry into the CNS. The most likely mechanism for a
reduction in the efficacy of the barrier to methylpredni-
solone entry is cyclosporine-A-mediated inhibition of
p-glycoprotein. Thus, these data indicate that p-glyco-
protein inhibition represents a potential method to
enhance methylprednisolone entry into the CNS.
Since spinal cord injury increases permeability of the

blood–spinal cord barrier,23,24 it is reasonable to
consider whether p-glycoprotein inhibition is necessary
to increase methylprednisolone concentrations in the
injured spinal cord. However, Braughler and Hall
demonstrated that methylprednisolone entry into in-
jured spinal tissue was greater than in uninjured tissue
only if methylprednisolone was administered within
1 h of injury. If administered more than 1 h after injury,
methylprednisolone concentration in injured spinal
tissue was no different than in uninjured tissue. These
findings would suggest that methylprednisolone perme-
ability across the blood–spinal cord barrier is only very
transiently increased and that methylprednisolone entry
into the spinal cord is likely to be increased even in the
injured spinal cord by p-glycoprotein inhibition.
The potential clinical advantage of improving methyl-

prednisolone entry into the CNS from the plasma is that
the methylprednisolone dose could be decreased with
the potential for a reduction in glucocorticoid-mediated
systemic side effects. In particular, reduced immune
suppression would be expected to decrease the risk of
wound infection, sepsis, and pneumonia that has been
noted in multiple studies in which high-dose methyl-
prednisolone was used in the treatment of acute spinal
cord injury. Importantly, a reduction in the incidence or
severity of these infectious complications may well have
a positive impact on neurologic recovery. For example,
hypotension, which frequently complicates sepsis, has
been identified as an important contributor to secondary
neurologic injury.11

Similarly, methylprednisolone-induced hyperglycemia
may contribute to secondary neurologic injury. Animal
models have demonstrated that hyperglycemia is an
important contributor to secondary neurologic
injury,12,25 and hyperglycemia has been implicated as a
contributor to poor neurologic outcome in humans.26,27

For example, Lam et al27 observed that head-injured
patients with a postoperative blood glucose concentra-
tion greater than 200mg/dl had a significantly worse
neurologic outcome than did patients with a lower
blood glucose concentration. Rovlias and Kotsou26

Figure 3 Percentage increase in steady-state methylpredniso-
lone concentrations following 10 and 30mg/kg cyclosporine
bolus. Steady-state methylprednisolone concentration was
defined as the average concentration present for the 60min
prior to cyclosporine bolus and for the final 60min of the study
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have reported very similar results. Consequently, use of
a p-glycoprotein inhibitor that increases methylpredni-
solone entry into the CNS and thereby permits a
reduction in the systemic methylprednisolone dose
may improve neurological outcome.
The ideal p-glycoprotein inhibitor would be a drug

that has little or no toxicity and which does not
simultaneously inhibit the related cytochromes involved
in drug metabolism. While pharmaceutical companies
are working on just such a drug, it is not yet clinically
available. We could have chosen other clinically avail-
able drugs (eg, digoxin, verapamil, vinca alkaloids,
daunamycin, etc) as competitive p-glycoprotein inhibi-
tors, but these drugs are acutely toxic or fatal in the
doses needed to produce demonstrable p-glycoprotein
inhibition in vivo. Thus, cyclosporine-A was an appro-
priate choice for a ‘proof of principle’. However, these
data should not be construed as advocating simulta-
neous administration of cyclosporine-A and methyl-
prednisolone in humans with spinal cord injury.
Although cyclosporine-A has been shown to improve
neurological function when it is administered alone
in animal models of acute neurological injury,28–36

its coadministration with high-dose methylprednisolone
is untested in humans and the potential for significant
morbidity secondary to profound immunosuppression
is a concern.
In summary, this study demonstrates that coadminis-

tering the p-glycoprotein inhibitor, cyclosporine-A,
increases entry of methylprednisolone into the CNS,
although it also increases plasma methylprednisolone
concentration by inhibiting methylprednisolone meta-
bolism. The findings suggest that current efforts by the
pharmaceutical industry to develop more potent and less
toxic p-glycoprotein inhibitors that do not simulta-
neously inhibit cytochrome p-450 may improve the
efficacy of methylprednisolone in treating acute spinal
cord trauma.
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