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A review of body mass index and waist circumference as markers of obesity

and coronary heart disease risk in persons with chronic spinal cord injury
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Study design: Literature review.
Background: Increased fat mass and coronary heart disease (CHD) are secondary complica-
tions of chronic spinal cord injury (SCI). In able-bodied populations, body mass index (BMI,
body weight (kg)/height (m2)) is a widely used surrogate marker of obesity and predictor of
CHD risk. Waist circumference, an accurate and reproducible surrogate measure of abdominal
visceral adipose tissue, is also associated with CHD risk (more so than BMI) in able-bodied
populations.
Objective: To review the literature on the accuracy of BMI and waist circumference as
surrogate measures of obesity and CHD risk in persons with chronic SCI.
Setting: Ontario, Canada.
Methods: Literature review.
Results: In the SCI population, BMI is an insensitive marker of obesity, explains less of the
variance in measured percent fat mass than in the able-bodied, and is inconsistently related to
CHD risk factors. This may be due to potential measurement error, and to the inability of BMI
to distinguish between fat and fat-free mass and to measure body fat distribution. Waist
circumference has not been validated as a surrogate measure of visceral adipose tissue, however
preliminary evidence supports a relationship between waist circumference and CHD risk in the
SCI population.
Conclusions: We recommend that SCI-specific BMI classifications be determined. We also
recommend that accuracy and reliability of waist circumference as a surrogate measure of
visceral adipose tissue and CHD risk be determined in men and women with long-standing
paraplegia and tetraplegia.
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Body mass index (BMI) as a marker of obesity
in chronic SCI

Obesity is defined as an excess accumulation of fat mass.
Able-bodied men and women p40 years are considered
obese when fat mass exceeds 22–25 and 35% of body
weight, respectively.1,2 As individuals age, fat mass
accrues at the expense of fat-free mass, so that at older
ages percentage fat mass is higher, even in individuals
who do not gain weight.3 Thus, obesity in 41–60-year-
old able-bodied men and women can be defined as a fat
mass 425 and 438% of body weight, respectively.2

Mean percent fat mass (measured by dual energy X-ray

absorptiometry (DXA), isotope dilution or the three-
compartment model) reported in cross-sectional studies
of persons (mostly men) with chronic spinal cord injury
(SCI) ranges from 23 to 35%.4–11 The percentage of
body weight as fat mass is 8–18% higher in SCI versus
age-, height- and/or weight-matched able-bodied control
subjects. These values are often consistent with the
above definitions of obesity, and are summarized in
Table 1.

Accurate classification of an individual as normal
weight, overweight or obese requires measurement of
body composition. However, measuring fat mass can be
difficult and expensive, and no accurate method is easily
available for routine clinical use. Therefore, the body
mass index (BMI) is widely used. Expressed as weight
(kg) divided by height (m2), BMI allows classification
of able-bodied adults as underweight, normal weight,
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overweight or obese, using the World Health Organiza-
tion criteria in Table 2.12 Mean BMI values in studies
of persons with long-standing SCI range from 20 to
27,5,6,10,13–18 consistent with the classifications of normal
and overweight, but inconsistent with classification
based on measured percent fat mass.4–11 One reason
for the underestimation of obesity using BMI may be
the potential measurement error associated with deter-
mination of weight and/or height in persons with SCI.
While weight can be measured using a wheelchair scale,
an accurate height is difficult to obtain in those who are
wheelchair dependent. Ideally, height is measured with
the subject standing against a stadiometer, with his/her

head in the Frankfurt plane and shoulders, buttocks and
heels pressed against the stadiometer.19 This may not
be possible in a significant proportion of persons with
SCI. Subject recall of height is not recommended as
recalled height and measured length have been found
to disagree, independent of age or years since injury.20

Despite this, recalled height has been used in a number
of studies reporting BMI in subjects with chronic
SCI.5,16,17 An alternative is to measure length. Jones
et al21 reported the Pearson’s correlation coefficient
for height (measured by wall-mounted stadiometer)
versus length (by the electronic ruler function of DXA)
to be 0.996 (P¼ 0.0001). Buchholz et al22 found the

Table 1 BMI and measured percent fat mass in cross-sectional studies of adults with chronic spinal cord injury

Reference Study population(s)
Body composition
method BMI (kg/m2) Percent fat mass

Modlesky et al,
20049

Eight men with complete SCI
(tetraplegic and paraplegic), 3579a

years, duration postinjury not reported;
eight age-, height- and weight-matched
able-bodied male controls

DXAb SCI: 24.6
Controls: 25.0
(P not reported)

SCI: 33.8716.4
Controls:
16.278.7
(Po0.05)

Buchholz et al,
20037

28 adults with paraplegia (17 men, 11
women; 18 complete, 10 incomplete),
33.979.2 years, X1.5 years postinjury;
34 BMI-matched able-bodied controls
(24 men, 10 women), 29.177.6 years

Deuterium
dilution

Paraplegic:
24.376.0
Controls:
23.571.8
(P¼ 0.8258)

Paraplegic:
30.878.7
Controls:
22.877.2
(P¼ 0.0002)

Jeon et al, 200311 Seven men with complete tetraplegia,
38.373.1 years (mean7SEM); seven
age-, weight-, height-, BMI- and waist
circumference-matched able-bodied
male controls

DXA SCI: 26.771.5
Controls:
29.471.6
(NS)

SCI: 34.677
Controls:
24.476.5
(P¼ 0.016)

Jones et al, 20036 20 men with SCI (13 tetraplegic, seven
paraplegic; five ASIA A, six ASIA B,
one ASIA C, one ASIA D), 16–52 years,
X1 year postinjury; 20 age-, height- and
weight-matched able-bodied male
controls

DXA SCI: 23.173.9
Controls:
24.071.8
(P¼ 0.34)

SCI: 27.5710.4
Controls:
18.176.5
(Po0.02)

Maggioni et al,
20038

13 men with SCI (one tetraplegic, 12
paraplegic), 33.875.4 years, X4 years
postinjury; 13 age- and BMI-matched
able-bodied male controls

DXA SCI: 25.774.3
Controls:
24.572.4
(NS)

SCI: 31.178.2
Controls:
20.876.9
(Po0.05)

Spungen et al,
20035

133 men with SCI (66 tetraplegic, 67
paraplegic; 94 motor complete),
approximately 38–40 years,
approximately 11–14 years postinjury
(group means not reported)

DXA Tetraplegic:
25.470.66
(mean7SEM)
Paraplegic:
25.870.56

Complete
tetraplegic: 3472
Incomplete
tetraplegic: 3572
Complete
paraplegic:
33.171
Incomplete
paraplegic: 2873

Desport et al,
200010

20 adults with SCI (tetraplegic and
paraplegic; 15 men, five women),
45.2712.8 years, X4 months postinjury

Three-
compartment
model (18O
dilution, skinfold
thickness, weight)

26.974.4 32.876.8

Monroe et al,
19984

10 men with SCI (one tetraplegic, nine
paraplegic; all Frankel Class A),
35.578.0 years, X2 years postinjury

DXA 21.7 23712

aMean7SD, unless otherwise indicated.
bDual energy X-ray absorptiometry.
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coefficient of variation between height (by wall-mounted
stadiometer) versus length (by length board) to be
0.870.02% (mean7SD, NS). Comparisons between
methods in both studies were performed on able-bodied
subjects; nonetheless, these data indicate good agree-
ment between length and stadiometer-determined
height.

A second potential reason for the underestimation of
obesity using BMI is that persons with chronic SCI have
greater fat mass and less fat-free mass per unit BMI than
age-matched able-bodied control subjects.6,22,23 Thus,
despite greater fat mass in subjects with versus without
SCI, body weight and BMI often do not differ.5,6,8,9,11,22

Buchholz et al22 found the 30 kg/m2 BMI cutoff
correctly identified only 20% of truly obese paraplegic
subjects, as compared with published sensitivity values
of 48–66% in able-bodied populations.24–26 In the study
of Buchholz et al, weight was measured using a
wheelchair scale, length was measured using a length
board, fat mass was determined by isotope dilution and
obesity was defined by the method of Lohman.2 Finally,
BMI has been found to explain 46–79% of the variance
in measured percent fat mass in able-bodied per-
sons,5,27–29 compared with only 35–36% in persons with
SCI.5,30

Taken together, these findings suggest that BMI is
a poor surrogate marker of obesity in the chronic SCI
population. The 30 kg/m2 cutoff recommended by the
World Health Organization to define obesity in able-
bodied persons is insensitive in persons with long-
standing SCI. This may be due to potential measure-
ment error and the inability of body weight to
distinguish between fat mass and fat-free mass.

BMI as a marker of coronary heart disease (CHD)
risk in chronic SCI

CHD is now a major cause of morbidity and mortality
in persons with SCI.31–33 A higher prevalence of CHD
has been reported in individuals with duration of SCI
greater than 10 years compared with relatively healthy
age-matched controls.34 SCI is associated with a number

of risk factors for CHD. High-density lipoprotein
(HDL) cholesterol levels are 20–42% lower (Po0.05)
in persons with SCI than in able-bodied persons.14,15,35–37

Triglyceride levels are 6–60% higher in SCI, although
not always significantly so.15,35–38 Total and low-density
lipoprotein (LDL) cholesterols are either higher, similar,
or lower, than in able-bodied subjects;15,16,37,39,40 the
relatively small number of subjects and differences in
subject characteristics studied may account for these
discrepancies. Impaired glucose tolerance, insulin resis-
tance and diabetes occur more frequently in SCI versus
able-bodied persons.15,38,41–45 Other potential CHD risk
factors after SCI include decreased physical activity,
psychosocial factors (depression, isolation), and ele-
vated plasma homocysteine and C-reactive protein.46

Increased fat mass has also been identified as an
important risk factor in chronic SCI and weight
management is recommended as a key CHD prevention
strategy.46 Obesity, and its surrogate BMI, is associated
with many CHD risk factors in able-bodied persons,
including dyslipidemia (increased LDL cholesterol and
triglycerides, and increased HDL cholesterol), hyper-
insulinemia, glucose intolerance and hypertension.47–50

The World Health Organization has recognized the
largely linear relationship between body weight and
these risk factors when BMI increases from 20 to
30 kg/m2, and has identified 30 kg/m2 as the threshold
above which risk for CHD is high.12 This has led to
the widespread use of BMI as a simple, cost-effective
marker of obesity and CHD risk in able-bodied
populations.12,51 However, the relationship between
BMI or body weight and CHD risk factors in the SCI
population is variable. Zlotolow et al14 found no
relationship between BMI and lipid levels in their study
of 28 veterans with paraplegia, nor did Bauman et al42

find a significant correlation between body weight and
insulin sensitivity in 100 veterans with SCI. BMI in
other studies of persons with SCI has been found to
explain 5–29% of the variance in lipid parameters.16–18

The variable relationship between BMI and CHD
risk factors in the SCI population may be due to
the potential measurement error associated with BMI,
the insensitivity of body weight in distinguishing fat
mass from fat-free mass, and the lack of information
conveyed by BMI regarding body fat distribution.
Abdominal obesity, specifically visceral adipose tissue,
is an independent risk factor for CHD in able-bodied
populations. Visceral adipose tissue is intra-abdominal
fat bound by the parietal peritoneum, and is measured
using computed tomography or magnetic resonance
imaging. A visceral fat depot of 4130 cm2 is associated
with significant proatherogenic changes in the plasma
lipoprotein–lipid profile as well as in indices of glucose–
insulin homeostasis.52 In his comprehensive review,
Després53 notes that abdominal visceral adipose tissue
is characterized by very active lipolysis. Since high free-
fatty acid levels have been shown to reduce the binding
and uptake of insulin by hepatocytes, an enlarged
visceral fat depot may expose the liver to high free-fatty
acid levels, leading to a reduced hepatic extraction of

Table 2 World Health Organization12 classification of adults
according to the BMI

Classification BMI
Risk of
comorbidities

Underweight o18.50 Low (but risk of
other clinical
problems
increased)

Normal range 18.50–24.99 Average
Overweight/
preobese

25.00–29.99 Increased

Obese class I 30.00–34.99 Moderate
Obese class II 35.00–39.99 Severe
Obese class III X40.00 Very severe
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insulin. Thus, visceral adipose tissue is associated with
hyperinsulinemia, insulin resistance and glucose intoler-
ance. Furthermore, the activity of lipoprotein lipase (a
lipolytic enzyme which hydrolyzes triglycerides into
lipoproteins) in skeletal muscle is negatively correlated
with in vivo insulin resistance, which could contribute to
the impaired catabolism of triglyceride-rich lipoproteins
observed in insulin-resistant subjects. The hypertrigly-
ceridemia of abdominal obesity is associated with
triglyceride enrichment of LDL and HDL cholesterols,
leading to the production of dense LDL cholesterol
(with a reduced affinity for the cellular LDL receptor),
increased levels of apolipoprotein B and reduced plasma
HDL cholesterol levels. Thus, visceral adipose tissue
creates a metabolic environment consistent with in-
creased risk of CHD. However, to the best of our
knowledge, no study has measured visceral adipose
tissue in persons with chronic SCI, despite the finding
that total truncal fat mass is significantly greater in men
with SCI versus age- and height-, weight- and/or BMI-
matched able-bodied men.6,8

Waist circumference: the missing link?

Waist circumference may offer the clinician the most
practical bedside measurement of visceral adipose tissue.
A waist circumference 4100 cm has been reported to be
a good surrogate for a visceral adipose depot 4130 cm2

in able-bodied men and women.54 Waist circumference
has been shown in large epidemiological studies of able-
bodied populations to be strongly, significantly and
independently correlated with blood pressure, dyslipi-
demia, fasting plasma glucose, 2-h plasma glucose and/
or diabetes, even after adjusting for age and other
confounding variables, and even among normal-weight
subjects.49,55,56 Furthermore, waist circumference was
found to correlate more strongly than BMI with three of
four obesity-related risk factors (LDL cholesterol, blood
pressure, glucose, but not HDL cholesterol) in over 9000
participants of the third National Health and Nutrition
Examination Survey,50 similar to findings of other
studies in the able-bodied literature.57–60

Waist circumference is measured in standing able-
bodied adults using a measuring tape placed around the
abdomen in a horizontal plane, with the subjects’ arms
hanging freely, after normal expiration.61 Exact location
of the measuring tape continues to be debated. A recent
study62 of 111 able-bodied males and females 7–83 years
determined that waist circumference values measured at
four sites (immediately below the lowest rib, at the
narrowest waist, midpoint between the lowest rib and
the iliac crest and immediately above the iliac crest) had
equally high reproducibility and were almost equally
associated with total body fat and trunk fat in each sex.
The authors noted that of the 14 anatomical locations
commonly reported in the literature, the narrowest waist
is the most frequently recommended. In many subjects
in their study, the narrowest waist was found to be
at the lowest rib, a site the authors found easy to
identify in most subjects, even in obese persons. The

umbilicus may not be an appropriate landmark in obese
persons because its position changes with increasing fat
mass.

Three studies11,15,63 have measured waist circumfer-
ence in subjects with chronic SCI. Jeon et al11 did not
report values, nor was the method of obtaining waist
circumference described. Maki et al63 measured waist
circumference in 46 men with paraplegia and tetraplegia
of 46 months duration. Measures were carried out in
duplicate at the level of the umbilicus after normal
expiration, with subjects supine. If values differed by
41 cm, a third measurement was taken and the results
of the two or three trials were averaged. Weight was
determined by wheelchair scale. Height was either self-
reported or measured in a supine position using a metal
measuring tape. Fat mass was determined using near
infrared interactance. Waist circumference explained
15–34% of the variance in HDL cholesterol, log 10
triglyceride as well as ratios of total:HDL cholesterols
and LDL:HDL cholesterols, more so than BMI and
percent fat mass (8–19 and 8–15%, respectively). Only
waist circumference was significantly associated with
HDL cholesterol. While these findings may indicate
waist circumference to be a better indicator of CHD risk
than BMI or percent fat mass, they need to be
interpreted with caution. Self-reported height may have
introduced measurement error in the calculation of
BMI; as well, near infrared interactance has not been
validated in the SCI population. This may have
obscured the relationships between BMI, fat mass and
CHD risk. Nonetheless, waist circumference was
strongly and significantly associated with CHD risk.
Demirel et al15 measured waist circumference in 69 men
and women with paraplegia and tetraplegia and 52 age-
and sex-matched able-bodied controls. Measurements
were made at the level of the umbilicus after normal
expiration with subjects supine; measurement error was
not reported. Waist circumference did not differ between
the two groups (SCI: 84.8710 cm versus able-bodied:
85.7711 cm, mean7SD), but the authors did report
higher glucose, uric acid, total and LDL cholesterols
and lower HDL cholesterol, and higher ratios of total/
HDL cholesterols and LDL/HDL cholesterols in the
subjects with SCI (all Po0.001). These proatherogenic
changes may have been due to greater visceral versus
subcutaneous adipose tissue in the SCI group, although
this requires confirmation. Taken together, evidence
from able-bodied populations suggests that waist
circumference is strongly and independently associated,
more so than BMI, with various CHD risk factors.
Preliminary evidence in the SCI population supports an
association between waist circumference and CHD risk
factors. However, a number of issues pertaining to waist
circumference have yet to be addressed in this popula-
tion. These include (1) the accuracy and reliability of
waist circumference as a surrogate measure of visceral
adipose tissue, (2) identification of the most appropriate
measurement site, (3) examination of the effects of
positioning (supine, sitting, standing) and (4) effects of
potential confounding variables unique to this popula-
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tion, including spasticity, loss of muscle tone and
abdominal distension.

Conclusion

In the SCI population, BMI may be prone to measure-
ment error, does not adequately discriminate between
the obese versus nonobese, explains less of the variance
in measured percent fat mass than in able-bodied
populations, and is inconsistently associated to CHD
risk factors. However, BMI continues to be widely
reported in the spinal cord literature. We recommend
that future research efforts determine SCI-specific BMI
obesity classifications.

Waist circumference, a reproducible surrogate mea-
sure of visceral abdominal adiposity, is associated with
many CHD risk factors, more so than BMI, in able-
bodied populations. Preliminary evidence supports a
relationship between waist circumference and CHD risk
factors in the SCI population. We recommend that
accuracy and reliability of waist circumference as a
surrogate measure of visceral adipose tissue, and the
relationship between waist circumference and CHD risk
factors, be determined in men and women with long-
standing paraplegia and tetraplegia.
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