Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments

Abstract

The actions of actin-based microfilaments in cell motility suggest a possible role in the mechanism of fast axonal transport1–3, but the pharmacological data evaluating their role in this process are equivocal4–6. Moreover, microfilaments are difficult to preserve and identify in ultrastructural studies7, so the organization and function of axonal actin has remained uncertain. We have now evaluated the role of actin microfilaments in intracellular transport of membranous organelles using video-enhanced contrast microscopy and gelsolin to analyse fast axonal transport directly in isolated axoplasm from the squid giant axon. With this preparation it is possible to perfuse axoplasm with large molecules that do not cross the plasmalemma, while controlling cation levels. The 90,000-molecular weight protein gelsolin depolymerizes actin microfilaments in micromolar Ca2+, but not in the absence of Ca2+. Axonal transport of membranous organelles has previously been shown to be unaffected by levels of Ca2+ up to 10 µM8. In the presence of EGTA, gelsolin has no effect on the movement of membranous organelles, but in the presence of 10 µM Ca2+ it completely blocks transport of all membranous organelles. No changes in the organization of the axoplasm were detected. These results and results using other probes for actin are consistent with the hypothesis that actin-based microfilaments are involved in the movement of membranous organelles in the axon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bray, D. Biochimie 59, 1–6 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg, D. in Axoplasmic Transport (ed. Weiss, D.) 73–80 (Springer, Berlin, 1982).

    Google Scholar 

  3. Isenberg, G., Schubert, P. & Kreutzberg, G. in Axoplasmic Transport (ed. Weiss, D.) 314–321 (Springer, Berlin, 1982).

    Google Scholar 

  4. Isenberg, G., Schubert, P. & Kreutzberg, G. Brain Res. 194, 588–593 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Goldberg, D., Harris, D., Lubit, B. & Schwartz, J. Proc. natn. Acad. Sci. U.S.A. 77, 7448–7452 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Goldberg, D. Proc. natn. Acad. Sci. U.S.A. 79, 4818–4822 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Forer, A. Meth. Cell Biol. 25, 131–142 (1982).

    Article  CAS  Google Scholar 

  8. Brady, S., Lasek, R. & Allen, R. Cell Motility (submitted).

  9. Lazarides, E. & Lindberg, U. Proc. natn. Acad. Sci. U.S.A. 71, 4742–4746 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Davies, P., Bechtel, P. & Pastan, I. FEBS Lett. 77, 228–232 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, S. & Spudich, J. J. Cell Biol. 88, 487–491 (1981).

    Article  CAS  Google Scholar 

  12. McLean-Fletcher, S. & Pollard, T. Cell 20, 329–341 (1980).

    Article  Google Scholar 

  13. Mojris, J. thesis, Case Western Reserve Univ. (1981).

  14. Morris, J. & Lasek, R. J. Cell Biol. 92, 192–198 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Wehland, J., Osborn, M. & Weber, K. Proc. natn. Acad. Sci. U.S.A. 74, 5613–5617 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Brady, S. T., Morris, J. R. & Lasek, R. J. (in preparation).

  17. Allen, R., Allen, N. & Travis, J. Cell Motility 1, 291–302 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Alien, R.D. & Allen, N. J. Microsc. 129, Pt 1, 3–17 (1983).

    Article  Google Scholar 

  19. Brady, S., Lasek, R. & Alien, R. Science 218, 1129–1131 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Alien, R., Metuzals, J., Tasaki, I., Brady, S. & Gilbert, S. Science 218, 1127–1129 (1982).

    Article  Google Scholar 

  21. Yin, H., Albrect, J. & Fattoum, A. J. Cell Biol. 91, 901–906 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Yin, H. L., Kwiatkowski, D., Mole, J. J. biol Chem. 259, 5271–5276 (1984).

    CAS  PubMed  Google Scholar 

  23. Yin, H., Hartwig, J., Maruyama, K. & Stossel, T. J. biol. Chem. 256, 9693–9697 (1981).

    CAS  PubMed  Google Scholar 

  24. Laemmli, U. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. O'Farrell, P. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, S., Lasek, R., Allen, R. et al. Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments. Nature 310, 56–58 (1984). https://doi.org/10.1038/310056a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310056a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing