Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host

Abstract

The application of molecular cloning to antibiotic-producing microorganisms should lead to enhanced antibiotic productivity and to the biosynthesis of novel antibiotics by in vitro interspecific recombination1,2. To allow such approaches, the genes for antibiotic synthesis must be isolated, analysed and perhaps modified. Certain Streptomyces species produce nearly two-thirds of the known natural antibiotics3; the recent development of cloning systems in the genus4–7 makes it possible to isolate and analyse Streptomyces genes. However, antibiotics are metabolites which require sets of several enzymes for their synthesis and attempts to isolate the corresponding genes have so far yielded clones carrying either individual genes of the set, or only incomplete gene sets8–11. We describe here the isolation of a large continuous segment of Streptomyces coelicolor DNA which apparently carries the complete genetic information required for synthesis of an antibiotic, actinorhodin, from simple primary metabolites. Not only can the cloned DNA ‘complement’all available classes of actinorhodin non-producing mutants of S.coelicolor but, on introduction into a different host, Streptomyces parvulas, it directs the synthesis of the antibiotic. The tendency for the genes for antibiotic synthesis to be clustered together on the chromosomes of Streptomyces species12 and the availability of pfasmid vectors which can carry stable inserts of DNA larger than 30 kilobase pairs (kb) and which can be introduced efficiently into Streptomyces protoplasts, suggest that the experiments described have general significance for this area of biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hopwood, D. A. & Chater, K. F. Phil. Trans. R. Soc. B290, 313–328 (1980).

    Article  CAS  Google Scholar 

  2. Hopwood, D. A. in β-Lactam Antibiotics (eds Salton, M. R. J. & Shockman, G. D.) 585–598 (Academic, New York, 1980).

    Google Scholar 

  3. Bérdy, J. Process. Biochem. Oct./Nov., 28–35 (1980).

  4. Bibb, M. J., Schottel, J. L. & Cohen, S. N. Nature 284, 526–531 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Suarez, J. E. & Chater, K. F. Nature 286, 527–529 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Thompson, C. J., Ward, J. M. & Hopwood, D. A. Nature 286, 525–527 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Bibb, M. J., Chater, K. F. & Hopwood, D. A. in Experimental Manipulation of Gene Expression (ed. Inoueye, M.) 53–82 (Academic, New York, 1983).

    Book  Google Scholar 

  8. Feitelson, J. S. & Hopwood, D. A. Molec. gen. Genet. 190, 394–398 (1983).

    Article  CAS  Google Scholar 

  9. Gil, J. A. & Hopwood, D. A. Gene 25, 119–132 (1983).

    Article  CAS  Google Scholar 

  10. Chater, K. F. & Bruton, C. J. Gene 26, 67–78 (1983).

    Article  CAS  Google Scholar 

  11. Hopwood, D. A., Bibb, M. J., Bruton, C. J., Feitelson, J. S. & Gil, J. A. Trends Biotechnol. 1, 42–48 (1983).

    Article  CAS  Google Scholar 

  12. Hopwood, D. A. in Biochemistry and Genetic Regulation of Commercially Important Antibiotics (ed. Vining, L. C.) 1–23 (Addison-Wesley, Reading, Massachusetts, 1983).

    Google Scholar 

  13. Brockman, H., Zeeck, A., van der Merve, K. & Müller, W. Justus Liebigs Annln Chem. 698, 3575–3579 (1983).

    Google Scholar 

  14. Carbaz, R. et al. Helv. chim. Acta 40, 1262–1269 (1957).

    Article  Google Scholar 

  15. Hoeksema, H. & Krueger, W. C. J. Antibiot., Tokyo 29, 704–709 (1976).

    Article  CAS  Google Scholar 

  16. Tanaka, H., Koyama, V., Nagai, T., Marumo, H. & Ōmura, S. J. Antibiot., Tokyo 28, 868–875 (1975).

    Article  CAS  Google Scholar 

  17. Gorst-Allman, C. P., Rudd, B. A. M., Chang, C.-J. & Floss, H. G. J. org. Chem. 46, 455–456 (1981).

    Article  CAS  Google Scholar 

  18. Rudd, B. A. M. & Hopwood, D. A. J. gen. Microbiol. 114, 35–43 (1979).

    Article  CAS  Google Scholar 

  19. Rudd, B. A. M. & Hopwood, D. A. J.gen. Microbiol. 119, 333–340 (1980).

    CAS  PubMed  Google Scholar 

  20. Schrempf, H., Bujard, H., Hopwood, D. A. & Goebel, W. J. Bact. 121, 416–421 (1975).

    CAS  PubMed  Google Scholar 

  21. Bibb, M. J., Freeman, R. F. & Hopwood, D. A. Molec. gen. Genet. 154, 155–166 (1977).

    Article  CAS  Google Scholar 

  22. Lydiate, D. J. thesis, Univ. East Anglia, Norwich (1984).

  23. Kieser, T. Plasmid (in the press).

  24. Maniatis, T., Hardison, R. C., Lacy, E., Lauer, J. & O'Connell, C. Cell 15, 687–701 (1978).

    Article  CAS  Google Scholar 

  25. Thompson, C. J., Ward, J. M. & Hopwood, D. A. J. Bact. 151, 668–677 (1982).

    CAS  Google Scholar 

  26. Westpheling, J. thesis, Univ. East Anglia, Norwich (1980).

  27. Katz, E., Thompson, C. J. & Hopwood, D. A. J. gen. Microbiol. 129, 2703–2714 (1983).

    CAS  PubMed  Google Scholar 

  28. Seno, E. T., Bruton, C. J. & Chater, K. F. Molec. gen. Genet. 193, 119–128 (1984).

    Article  CAS  Google Scholar 

  29. Packter, N. M. in The Biochemistry of Plants Vol. 4 (ed. Strumpf, P. K.) 535–570 (Academic, London, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malpartida, F., Hopwood, D. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309, 462–464 (1984). https://doi.org/10.1038/309462a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309462a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing