Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure, stability and evolution of Saturn's rings

Abstract

Recent data obtained from the Voyager spacecrafts and ground-based measurements indicate: (1) the rings have a thickness of at most 150 m (ref. 1) and probably several times less2,3; (2) the rings are mostly composed of ice particles ranging from centimetres to metres in size4; (3) the rings are subdivided into a large number of ringlets with a radial dimension ranging from 10-km down to the several metres resolution of the Voyager spacecraft's camera5; (4) the B ring contains very many optical depth variations (0.6–3)3. This behaviour is essentially determined by the collisional properties of the rings' ice particles. Here we report some preliminary results from an experiment designed to measure the coefficient of restitution of ice particles colliding at impact velocities relevant to Saturn's rings. We apply these results to simple dynamical models for Saturn's rings and deduce the rings' thickness to be 5 m. We also show that regions with optical depth <0.5, such as the B ring, are unstable to viscous diffusion. Such an instability may be the cause of optical depth variations in the B ring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lane, A. L. et al. Science 215, 537–543 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Zebker, H. A. & Tyler, G. L. Science (in the press).

  3. Esposito, L. W., O'Callaghan, M. & West, R. A. J. geophys. Res. 88, 8643–8649 (1983).

    Article  ADS  Google Scholar 

  4. Marouf, E. A., Tyler, G. L., Zebker, H. A., Simpson, R. A. & Eshleman, V. R. Icarus 54, 189–211 (1983).

    Article  ADS  Google Scholar 

  5. Smith, B. A. et al. Science 215, 504–537 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Cook, A. F. & Franklin, F. A. Astr. J. 69, 173–200 (1964).

    Article  ADS  Google Scholar 

  7. Brahic, A. Astr. Astrophys. 54, 895–907 (1977).

    ADS  Google Scholar 

  8. Goldreich, P. & Tremaine, S. Icarus 34, 227–239 (1978).

    Article  ADS  Google Scholar 

  9. Hameen-Antilla, K. A. & Lukkari, J. Astrophys. Space Sci. 71, 475–497 (1980).

    ADS  Google Scholar 

  10. Lynden-Bell, D. & Pringle, J. Mon. Not. R. astr. Soc. 168, 603–637 (1974).

    Article  ADS  Google Scholar 

  11. Goldsmith, W. Impact (Arnold, London, 1960).

    MATH  Google Scholar 

  12. Hameen-Antilla, K. A. Astrophys. Space Sci. 58, 477–519 (1978).

    Article  ADS  Google Scholar 

  13. Ward, W. R. Geophys. Res. Lett. 8, 641–643 (1981).

    Article  ADS  Google Scholar 

  14. Lukkari, J. Nature 292, 433–435, (1981).

    Article  ADS  Google Scholar 

  15. Lin, D. N. C. & Bodenheimer, P. Astrophys. J. Lett. 248, L83–L86 (1981).

    Article  ADS  Google Scholar 

  16. Andrew, J. P. Phil. Mag. 9, 593–610 (1930).

    Article  Google Scholar 

  17. Landau, L. & Lifshitz, E. M. Theory of Elasticity (Pergamon, London, 1959).

    MATH  Google Scholar 

  18. Borderies, N., Goldreich, P. & Tremaine, S. in Planetary Rings (eds Greenberg, R. & Brahic, A.) (University of Arizona, in the press).

  19. Weidenschilling, S. J., Chapman, C. R., Davis, D. R. & Greenberg, R. in Planetary Rings (eds Greenberg, R. & Brahic, A.) (University of Arizona, in the press).

  20. Lissauer, J. J., Shu, F. H. & Cuzzi, J. N. Proc. IAU Colloq. 75, (in the press).

  21. Shu, F. H., Cuzzi, J. N. & Lissauer, J. J. Icarus 53, 185–206 (1983).

    Article  ADS  Google Scholar 

  22. Borderies, N., Goldreich, P. & Tremaine, S. Nature 299, 209–211 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridges, F., Hatzes, A. & Lin, D. Structure, stability and evolution of Saturn's rings. Nature 309, 333–335 (1984). https://doi.org/10.1038/309333a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309333a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing