Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preferential integration of yeast transposable element Ty into a promoter region

Abstract

Mobile genetic elements have been identified in several eukaryotic organisms and some classes have been found to share common structural features with the proviral forms of animal retroviruses1–7. The representatives of this class of mobile elements in the yeast Saccharomyces cerevisiae are called Ty elements8, which could be a useful model system for studying the transposition of retrovirus-like elements. Here we have attempted to answer two questions often raised in discussions of the biological importance of transposition: what is the frequency of spontaneous Ty transposition, and are there certain chromosomal regions into which Ty elements preferentially integrate? We chose the LYS2 gene to investigate these questions because it allows direct selection of both mutants and revertants9. We have found that 2% of spontaneous lys2 mutants are caused by Ty transposition with a preferential integration into the transcription initiation region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Temin, H. M. Cell 21, 599–600 (1980).

    Article  CAS  Google Scholar 

  2. Eibel, H., Gafner, J., Stotz, A. & Philippsen, P. Cold Spring Harb. Symp. quant. Biol. 45, 581–591 (1981).

    Article  Google Scholar 

  3. Elder, R. T., Loh, E. T. & Davis, R. W. Proc. natn. Acad. Sci. U.S.A. 80, 2432–2436 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Rubin, G. M. et al. Cold Spring Harb. Symp. quant. Biol. 45, 619–628 (1981).

    Article  CAS  Google Scholar 

  5. Flavell, A. J. & Ish-Horowicz, D. Nature 292, 591–595 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Shiba, T. & Saigo, K. Nature 302, 119–124 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Varmus, H. E. in Mobile Genetic Elements (ed. Shapiro, J. A.) 411–503 (Academic, New York, 1983).

    Google Scholar 

  8. Cameron, J. R., Loh, E. T. & Davis, R. W. Cell 16, 739–751 (1979).

    Article  CAS  Google Scholar 

  9. Chattoo, B. B. et al. Genetics 93, 651–665 (1979).

    Google Scholar 

  10. Southern, E. J. molec. Biol. 98, 503 (1975).

    Article  CAS  Google Scholar 

  11. Eibel, H. & Philippsen, P. Molec. gen. Genet. 191, 66–73 (1983).

    Article  CAS  Google Scholar 

  12. Roeder, G. S. & Fink, G. R. in Mobile Genetic Elements (ed. Shapiro, J. A.) 299–328(Academic, New York, 1983).

    Google Scholar 

  13. Williamson, V. M. Int. Rev. Cytol. (in the press).

  14. Chattoo, B. B., Palmer, E., Bun-Ichiro, O. & Sherman, F. Genetics 93, 67–79 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gafner, J. & Philippsen, P. Nature 286, 414–418 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Farabaugh, P. J. & Fink, G. R. Nature 286, 352–356 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Roeder, G. S. & Fink, G. R. Cell 21, 239–249 (1980).

    Article  CAS  Google Scholar 

  18. Roeder, G. S., Farabaugh, P. J., Chaleff, D. T. & Fink, G. R. Science 109, 1375–1380 (1980).

    Article  Google Scholar 

  19. Williamson, V. M., Young, E. T. & Ciriacy, M. Cell 23, 605–614 (1981).

    Article  CAS  Google Scholar 

  20. Williamson, V. M., Cox, D., Young, E. T., Russel, D. W. & Smith, M. Molec. cell. Biol. 3, 20–31 (1983).

    Article  CAS  Google Scholar 

  21. Errede, B. Cell 25, 427–436 (1980).

    Article  Google Scholar 

  22. Montgomery, D. L. et al. J. biol. Chem. 257, 7756–7751 (1982).

    CAS  PubMed  Google Scholar 

  23. Jauniaux, J.-C., Dubois, E., Vissers, S., Crabeel, M. & Wiame, J.-M. EMBO J. 1, 1125–1131 (1982).

    Article  CAS  Google Scholar 

  24. Scherer, S., Mann, C. & Davis, R. W. Nature 298, 815–819 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Gafner, J., DeRobertis, E. & Philippsen, P. EMBOJ. 2, 583–591 (1983).

    Article  CAS  Google Scholar 

  26. Goldberg, M. L. thesis, Stanford Univ. (1979).

  27. Ikenaga, H. & Saigo, K. Proc. natn. Acad. Sci. U.S.A. 79, 4143–4147 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Snyder, M. P. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7430–7443 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Hayward, W. S., Neel, B. G. & Astrin, S. M. Nature 290, 475–480 (1981).

    Article  ADS  CAS  Google Scholar 

  30. Payne, G. S., Bishop, M. J. & Varmus, H. E. Nature 295, 209–214 (1982).

    Article  ADS  CAS  Google Scholar 

  31. Kuff, E. L. et al. Nature 302, 547–548 (1983).

    Article  ADS  CAS  Google Scholar 

  32. Schnieke, A., Harbers, K. & Jaenisch, R. Nature 304, 315–320 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Messing, J. 3rd Cleveland Symp. Macromolecules: Recombinant DNA (ed. Walton, A.) 143–153 (Elsevier, Amsterdam, 1981).

    Google Scholar 

  34. Smith, G. E. & Summers, M. D. Analyt. Biochem. 109, 123–129 (1980).

    Article  CAS  Google Scholar 

  35. Rigby, P. W., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  36. Philippsen, P., Kramer, R. A. & Davis, R. W. J. molec. Biol. 123, 371–386 (1978).

    Article  CAS  Google Scholar 

  37. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1978).

    Article  Google Scholar 

  38. Bolivar, F. et al. Gene 2, 95–113 (1977).

    Article  CAS  Google Scholar 

  39. Yang, R. C. A., Liz, J. & Wu, R. Meth. Enzym. 68, 178–181 (1979).

    Google Scholar 

  40. Grunstein, M. & Hogness, D. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eibel, H., Philippsen, P. Preferential integration of yeast transposable element Ty into a promoter region. Nature 307, 386–388 (1984). https://doi.org/10.1038/307386a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307386a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing