Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord?

Abstract

The site of action of the antispastic drug baclofen has long been considered to reside in the spinal cord1,2 although supraspinal effects have also been reported3–6. This β-chlorophenyl derivative of the neurotransmitter γ-aminobutyric acid (GABA) depresses both monosynaptic and polysynaptic transmission in the cord7 possibly through a decrease in transmitter release rather than by any antagonism at postsynaptic receptors7–10. Recently, baclofen has been shown to be a selective ligand for a bicuculline-insensitive GABA receptor (GABAB) site11,12 that occurs widely in the mammalian central nervous system including the spinal cord13. The apparent importance of the cord in the therapeutic effects of this drug prompted us to ask whether they involve GABAB site activation. As an initial step we have located these receptors by autoradiography, comparing them with classical GABAA sites. We report here that GABAB sites, unlike GABAA sites, are present in high concentrations in laminae I, II, III and IV of the dorsal horn and that after the neonatal administration of capsaicin this binding is reduced by 40–50%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bein, H. J. in Spasticity—a topical survey (ed. Birkmayer, W.) (Hans Huber, Vienna, 1972).

    Google Scholar 

  2. Fehr, H. U. & Bein, H. J. J. int. Med. Res. 2, 36 (1974).

    Article  CAS  Google Scholar 

  3. Saelens, J. K., Welch, J., Robson, R. D. & Roffman, M. Fedn Proc. 36, 395 (1977).

    Google Scholar 

  4. Davies, J. & Watkins, J. C. Brain Res. 70, 501–505 (1974).

    Article  CAS  Google Scholar 

  5. Olpe, H. R., Koella, W. P., Wolf, P. & Haas, H. L. Brain Res. 134, 577–580 (1977).

    Article  CAS  Google Scholar 

  6. Lanthorn, T. H. & Cotman, C. W. Brain Res. 225, 171–178 (1981).

    Article  CAS  Google Scholar 

  7. Davies, J. Br. J. Pharmac. 72, 373–384 (1981).

    Article  CAS  Google Scholar 

  8. Fox, S., Krnjevic, K., Morris, M. E., Puil, E. & Werman, R. Neuroscience 3, 495–515 (1978).

    Article  CAS  Google Scholar 

  9. Davidoff, R. A. & Sears, E. S. Neurology 24, 957–963 (1974).

    Article  CAS  Google Scholar 

  10. Henry, J. L. Neuropharmacology 21, 1085–1093 (1982).

    Article  CAS  Google Scholar 

  11. Bowery, N. G. et al. Eur. J. Pharmac. 71, 53–70 (1981).

    Article  CAS  Google Scholar 

  12. Hill, D. R. & Bowery, N. G. Nature 290, 149–152 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Wilkin, G. P., Hudson, A. L., Hill, D. R. & Bowery, N. G. Nature 294, 584–587 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Bowery, N. G., Hill, D. R. & Hudson, A. L. Br. J. Pharmac. 78, 191–206 (1983).

    Article  CAS  Google Scholar 

  15. Young, W. S. & Kuhar, M. J. Brain Res. 179, 255–270 (1979).

    Article  CAS  Google Scholar 

  16. Bowery, N. G. et al. Nature 283, 92–94 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Muhyaddin, M., Roberts, P. J. & Woodruff, G. N. Br. J. Pharmac. 77, 163–168 (1982).

    Article  CAS  Google Scholar 

  18. Hughes, P. R., Morgan, P. F. & Stone, T. W. Br. J. Pharmac. 77, 691–695 (1982).

    Article  CAS  Google Scholar 

  19. Cain, C. R. & Simmonds, M. A. Neuropharmacology 21, 371–373 (1982).

    Article  CAS  Google Scholar 

  20. Kilpatrick, G. J., Muhyaddin, M. S., Roberts, P. J. & Woodruff, G. N. Br. J. Pharmac. 78, Suppl. 6P (1983).

  21. Fillenz, M. & Fung, S. C. J. Physiol., 339, 390 (1983).

    Google Scholar 

  22. Bowery, N. G., Price, G. W., Turnbull, M. J. & Wilkin, G. P. Br. J. Pharmac. 79, Suppl. 189P (1983).

  23. Cutting, D. A. & Jordan, C. C. Br. J. Pharmac. 54, 171–179 (1975).

    Article  CAS  Google Scholar 

  24. Levy, R. A. & Proudfit, H. K. J. Pharm. exp. Ther. 202, 437–445 (1977).

    CAS  Google Scholar 

  25. Cutting, D. A. & Jordan, C. C. Scot. med. J. 25, S17–S22 (1980).

    Article  CAS  Google Scholar 

  26. Brodie, M. E. & McQueen, E. G. Proc. Univ. Otago med. Sch. 53, 40–41 (1975).

    Google Scholar 

  27. Ladewig, D. Neurol. Psychiat. Prax. (D) 10 (1980).

  28. Bowery, N. G. Trends pharmac. Sci. 3, 400–403 (1982).

    Article  CAS  Google Scholar 

  29. Ninkovic, M., Hunt, S. P. & Kelly, J. S. Brain Res. 230, 111–119 (1981).

    Article  CAS  Google Scholar 

  30. Jancso, G., Kiraly, E. & Jancso-Gabor, A. Nature 270, 741–743 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Faulkner, D. C. & Growcott, J. W. J. pharm. Pharmac. 32, 656–657 (1980).

    Article  CAS  Google Scholar 

  32. Sternberger, L. A. in Immunocytochemistry, 104–169 (Wiley, New York, 1979).

    Google Scholar 

  33. Disbrey, B. D. & Rack, J. H. Histological Laboratory Methods (Livingstone, Edinburgh, 1970).

    Google Scholar 

  34. Gamse, R., Holzer, P. & Lembeck, F. Br. J. Pharmac. 68, 207–213 (1980).

    Article  CAS  Google Scholar 

  35. Nagy, J. I., Hunt, S. P., Iversen, L. L. & Emson, P. C. Neuroscience 6, 1923–1924 (1981).

    Article  CAS  Google Scholar 

  36. McLaughlin, B. J., Barber, R., Saito, K., Roberts, E. & Wu, J-Y. J. comp. Neurol. 164, 305–322 (1975).

    Article  CAS  Google Scholar 

  37. Barber, R. P., Vaughn, J. E., Saito, K., McLaughlin, B. J. & Roberts, E. Brain Res. 141, 35–55 (1978).

    Article  CAS  Google Scholar 

  38. Palacios, J. M., Wamsley, J. K. & Kuhar, M. J. Brain Res. 222, 285–307 (1981).

    Article  CAS  Google Scholar 

  39. Singer, E. & Placheta, P. Brain Res. 202, 484–487 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, G., Wilkin, G., Turnbull, M. et al. Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord?. Nature 307, 71–74 (1984). https://doi.org/10.1038/307071a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307071a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing