Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entropically driven microphase transitions in mixtures of colloidal rods and spheres

Abstract

Although the idea that entropy alone is sufficient to produce an ordered state is an old one in colloid science1, the notion remains counter-intuitive and it is often assumed that attractive interactions are necessary to generate phases with long-range order. The phase behaviour for both rods and spheres has been studied experimentally1,2,3,4,5,6,7, theoretically8,9 and by computer simulations10. Here we describe the phase behaviour of mixtures of colloidal rod-like and sphere-like particles (respectively viruses and polystyrene latex or polyethylene oxide polymer) under conditions in which they act like hard' particles2,3. We find a wealth of behaviour: bulk demixing into rod-rich and rod-poor phases and microphase separation into a variety of morphologies. One microphase consists of layers of rods alternating with layers of spheres11; in another microphase of unanticipated complexity, the spheres reversibly assemble into columns, which in turn pack into a crystalline array. Our experiments, and previous theory and computer simulations11, suggest that this phase behaviour is entropically driven by steric repulsion between particles. The phenomena are likely to be quite general, applying also for example to low-molecular-mass liquid crystals12. This kind of microphase separation might also be relevant to systems of amphiphiles13 and block copolymers14, to bioseparation methods and DNA partitioning in prokaryotes15, and to protein crystallization16,17 and the manufacture of composite materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical phase diagram for aligned spherocylinders of length L, diameter D, and spheres of diameter σ .(ref. 11) for L/D = 100 and σ/D = 10.
Figure 2: Phase diagram for fd and 100-nm diameter polystyrene spheres.
Figure 3: Photographs and diagrams of regions of the phase diagram shown in Fig. 2.
Figure 4: Effective rod–sphere attraction.

Similar content being viewed by others

References

  1. Forsyth, P. A. J, Marcelja, S., Mitchell, D. J. & Ninham, B. W. Ordering in colloidal systems. Adv. Coll. Int. Sci. 9, 37–60 (1978).

    Article  CAS  Google Scholar 

  2. Fraden, S. in Observation, Prediction, and Simulation of Phase Transitions in Complex Fluids (eds Baus, M., Rull, L. F. & Ryckaert, J. P.) 113–164 (Kluwer Academic, Dordrecht, (1995)).

    Book  Google Scholar 

  3. Poon, W. C. K. & Pusey, P. N. in Observation—Prediction, and Simulation of Phase Transitions in Complex Fluids (eds Baus, M., Rull, L. F. & Ryckaert, J. P.) 3–51 (Kluwer Academic, Dordrecht, (1995)).

    Book  Google Scholar 

  4. Tang, J. & Fraden, S. Isotropic–cholesteric phase transition in colloidal suspensions of filamentous bacteriophage fd. Liq. Cryst. 19, 459–467 (1995).

    Article  CAS  Google Scholar 

  5. Tang, J. & Fraden, S. Temperature dependence of the flexibility of fd: Behavior of the isotropic–cholesteric phase boundary and magnetic birefringence. Biopolymers 39, 13–22 (1996).

    Article  CAS  Google Scholar 

  6. Dogic, Z. & Fraden, S. Smectic phase in a colloidal suspension of semiflexible virus particles. Phys. Rev. Lett. 78, 2417–2420 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Sato, T. & Teramoto, A. Concentrated solutions of liquid-crystalline polymers. Adv. Polym. Sci. 126, 85–161 (1996).

    Article  CAS  Google Scholar 

  8. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  ADS  CAS  Google Scholar 

  9. Hosino, M., Nakano, H. & Kimura, H. Nematic-smectic transition in an aligned rod system. J. Phys. Soc. Jpn 46, 1709–1715 (1979).

    Article  ADS  Google Scholar 

  10. Frenkel, D. in Liquids, Freezing, and Glass Transition (eds Hansen, J. P., Levesque, D. & Zinn-Justin, J.) Ch. 9, 689–762 (Elsevier Science, Amsterdam, (1991)).

    Google Scholar 

  11. Koda, T., Numajiri, M. & Ikeda, S. Smectic-A phase of bidisperse system of parallel hard rods and hard spheres. J. Phys. Soc. Jpn 65, 3551–3556 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Rieker, T. P. Organic lyotropic lamellar liquid crystals. Liq. Cryst. 19, 497–500 (1995).

    Article  CAS  Google Scholar 

  13. Gelbart, W. M., Ben-Shaul, A. & Roux, D. (eds) Micelles, Membranes, Microemulsions, and Monolayers (Springer, New York, (1994)).

    Book  Google Scholar 

  14. Bates, F. S. Polymer–polymer phase behavior. Science 251, 898–905 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Walter, H. & Brooks, D. E. Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett. 361, 135–139 (1995).

    Article  CAS  Google Scholar 

  16. ten Wolde, P. R. & Frenkel, D. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277, 1975–1978 (1997).

    Article  CAS  Google Scholar 

  17. Adams, M. & Fraden, S. Phase behavior of mixtures of rods (tobacco mosaic virus) and spheres (polyethylene oxide, bovine serum albumin). Biophys. J. 74, 669–677 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J.Polym. Sci. 33, 183–192 (1958).

    Article  ADS  CAS  Google Scholar 

  19. Flory, P. J. Statistical thermodynamics of mixtures of rodlike particles. 5. Mixtures with random coils. Macromolecules 11, 1138–1141 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Gast, A. P., Russel, W. B. & Hall, C. K. An experimental and theoretical study of phase transitions in the polystyrene latex and hydroxyethylcellulose system. J. Coll. Int. Sci. 109, 161–171 (1986).

    Article  ADS  CAS  Google Scholar 

  21. 1. Frenkel, D. in Proceedings of the Sitges Conference on Complex Liquids (ed. Garrido, L.) 137–148 (Springer, New York, (1993)).

    Google Scholar 

  22. Dinsmore, A. D., Yodh, A. G. & Pine, D. J. Entropic control of particle motion using passive surface microstructures. Nature 383, 239–242 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Lekkerkerker, H. N. W. & Stroobants, A. Phase behaviour of rod-like colloid + flexible polymer mixtures. Il Nuovo Cimento 16 D 949–962 (1994).

    Article  ADS  Google Scholar 

  24. Bolhuis, P., Stroobants, A., Frenkel, D. & Lekkerkerker, H. N. W. Numerical study of the phase behavior of rodlike colloids with attractive interactions. J. Chem. Phys. 107, 1551–1564 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Herzfeld, J. Entropically driven order in crowded solutions: From liquid crystals to cell biology. Acc. Chem. Res. 29, 31–37 (1996).

    Article  CAS  Google Scholar 

  26. Devanand, K. & Selser, J. C. Polyethylene oxide does not necessarily aggregate in water. Nature 343, 739–741 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Model, P. & Russel, M. in The Bacteriophages (ed. Calender, R.) Ch. 6, 375–456 (Plenum, New York, (1988)).

    Book  Google Scholar 

  28. Chiruvolu, S., Naranjo, E. & Zasadzinski, J. A. Microstructure of Complex Fluids by Electron Microscopy (Am. Chem. Soc., Washington DC, (1994)).

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge grant support from the NSF (D.M.R.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Fraden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M., Dogic, Z., Keller, S. et al. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998). https://doi.org/10.1038/30700

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30700

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing