Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon nanotubule membranes for electrochemical energy storage and production

Abstract

Ensembles of aligned and monodisperse tubules of graphitic carbon can be prepared by a templating method1,2,3,4 that involves the chemical-vapour deposition of carbon within the pores of alumina membranes5,6,7. Tubules with diameters as small as 20 nm have been prepared in this way7,8. The carbon comprising these tubules can be transformed from a disordered material to very highly ordered graphite5. Here we show that template-synthesized carbon tubules can be fabricated as free-standing nanoporous carbon membranes, and that narrower, highly ordered graphitic carbon nanotubes can be prepared within the membrane's tubules. Both the outer and the inner tubules are electrochemically active for intercalation of lithium ions, suggesting possible applications in lithium-ion batteries9,10. The membranes can also be filled with nanoparticles of electrocatalytic metals and alloys. Such catalyst-loaded membranes can be used to electrocatalyse O2 reduction and methanol oxidation, two reactions of importance to fuel-cell technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrographs of tubules and membranes.
Figure 2: Cyclic voltammograms illustrating possible Li-ion battery application of the carbon nanotubule membranes.
Figure 3: Cyclic voltammograms (CVs) of template-synthesized carbon-tubule membranes.
Figure 4: Cyclic voltammograms illustrating electrocatalytic applications of the carbon nanotubule membranes.

Similar content being viewed by others

References

  1. Martin, C. R. Nanomaterials—A membrane-based synthetic approach. Science 266, 1961–1966 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Nishizawa, M., Menon, V. P. & Martin, C. R. Metal nanotube membranes with electrochemically switchable ion-transport selectivity. Science 268, 700–702 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Parthasarathy, R. V. & Martin, C. R. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature 369, 298–301 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Jirage, K. B., Hulteen, J. C. & Martin, C. R. Nanotube-based molecular filtration membranes. Science 278, 655–658 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Che, G., Lakshmi, B. B., Martin, C. R., Fisher, E. R. & Ruoff, R. S. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater. 10, 260–267 (1998).

    Article  CAS  Google Scholar 

  6. Kyotani, T., Tsai, L.-F. & Tomita, A. Formation of ultrafine carbon tubes by using an anodic aluminum oxide film as a template. Chem. Mater. 7, 1427–1428 (1995).

    Article  CAS  Google Scholar 

  7. Kyotani, T., Tsai, L.-F. & Tomita, A. Formation of platinum nanorods and nanoparticles in uniform carbon nanotubes prepared by a template carbonization method. Chem. Commun. 701–702 (1997).

  8. Dahu, J. R., Zheng, T., Liu, Y. & Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995).

    Article  ADS  Google Scholar 

  9. Sato, K., Noguchi, M., Demachi, A., Oki, N. & Endo, M. Amechanism of lithium storage in disorder carbons. Science 264, 556–558 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Freemantle, M. Filled carbon nanotubes could lead to improved catalysts and biosensors. Chem. Eng. News 74, 62 (1996).

    Article  Google Scholar 

  11. Baum, R. M. Nurturing nanotubes, remarkable properties of nanotubes suggest range of new technologies; workshop examines how to develop them. Chem. Eng. News 75, 39–41 (1997).

    Article  Google Scholar 

  12. Dillon, A. C. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Gadd, G. E. et al. The world's smallest gas cylinders. Science 277, 933–936 (1997).

    Article  CAS  Google Scholar 

  14. Planeix, J. M. et al. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935–7936 (1994).

    Article  CAS  Google Scholar 

  15. Sloan, J., Cook, J., Green, M. L. H., Hutchison, J. L. & Tenne, R. Crystallisation inside fullerene related structures. J. Mater. Chem. 7(7), 1089–1095 (1997).

    Article  Google Scholar 

  16. Wong, S. S., Harper, J. D., Lansbery, P. T. & Lieber, C. M. Carbon nanotube tips: High-resolution probes for imaging biological systems. J. Am. Chem. Soc. 120, 603–604 (1998).

    Article  CAS  Google Scholar 

  17. Dai, H. J., Hafner, J. H., Rinzler, A. G., Colbert, D. T. & Smalley, R. E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Li, W. Z. et al. Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C. R. & Yoneyama, H. Template synthesis of polypyrrole-coated spaniel LiMn2O4nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc. 144, 1923–1927 (1997).

    Article  CAS  Google Scholar 

  20. Che, G., Jirage, K. B., Fisher, E. R., Martin, C. R. & Yoneyama, H. Chemical-vapor deposition-based template synthesis of microtubular TiS2battery electrodes. J. Electrochem. Soc. 144, 4296–4302 (1997).

    Article  CAS  Google Scholar 

  21. 1. Jean, M., Desnoyer, C., Tranchant, A. & Messina, R. Electrochemical and structural studies of petroleum coke in carbonate-based electrolytes. J. Electrochem. Soc. 142, 2122–2125 (1995).

    Article  CAS  Google Scholar 

  22. Verbrugge, M. W. & Koch, B. J. Lithium intercalation of carbon-fiber microelectrodes. J. Electrochem. Soc. 143, 24–31 (1996).

    Article  CAS  Google Scholar 

  23. Bockris, J. O'M. & Srinivasan, S. Fuel Cells: their Electrochemistry (McGraw-Hill, New York, (1969)).

    Google Scholar 

  24. Bard, A. J. & Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications (Wiley, New York, (1980)).

    Google Scholar 

  25. Ye, S., Uijh, A. K. & Dao, L. H. Anew fuel cell electrocatalyst based on highly porous carbonized polyacrylonitrile foam with low platinum loading. J. Electrochem. Soc. 143, L7–L9 (1996).

    Article  CAS  Google Scholar 

  26. Shen, P. K. & Tseung, A. C. C. Anodic oxidation of methanol on Pt/WO3in acidic media. J.Electrochem. Soc. 141, 3082–3089 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy and the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Che, G., Lakshmi, B., Fisher, E. et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998). https://doi.org/10.1038/30694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30694

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing