Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective unfolding of erythroid chromatin in the region of the active β-globin gene

Abstract

Globin gene expression, which occurs exclusively in the erythroid cell lineage, is controlled at the level of transcription1. It is thus of some considerable interest to compare the chromatin structure of this gene with that of inactive genes in erythroid cell nuclei and to compare the chromatin structure of the globin gene in its active and inactive states in nuclei of different cell types. Other workers have observed that globin genes in erythroid cell nuclei exhibit the enhanced overall sensitivity to nucleases2 and the hypersensitive site in the 5′-flanking sequence3 typical of many active genes4. The nature of the structural changes giving rise to nuclease sensitivity are however obscure. We have investigated the local higher order structure of chromatin in the region of unique genes in chicken by sucrose gradient sedimentation of chromatin restriction fragments. We find that ovalbumin and α2-collagen gene fragments in erythrocyte chromatin and an adult β-globin gene fragment in spleen chromatin sediment with bulk chromatin fragments of the same DNA size, whereas the β-globin gene fragment in erythrocyte chromatin sediments more slowly than bulk fragments of equivalent size. The simplest interpretation of the results is that the solenoid structure in the region of the globin gene is selectively and permanently unfolded on gene activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chao, M. V., Mellon, P., Charnay, P., Maniatis, T. & Axel, R. Cell 12, 483–493 (1983).

    Article  Google Scholar 

  2. Weinbraub, H. & Groudine, M. Science 193, 848–856 (1976).

    Article  ADS  Google Scholar 

  3. McGhee, J., Wood, W. T., Dolan, M., Engel, J. D. & Felsenfeld, G. Cell 27, 45–55 (1981).

    Article  CAS  Google Scholar 

  4. Cartwright, I. L. et al. CRC Crit. Rev. Biochem. 13, 1–86 (1982).

    Article  CAS  Google Scholar 

  5. Allan, J. et al. J. Cell Biol. 90, 279–288 (1981).

    Article  CAS  Google Scholar 

  6. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  7. Hentschel, C. C. & Tata, J. R. Devl. Biol. 65, 496–507 (1978).

    Article  CAS  Google Scholar 

  8. Gariglio, P., Bellard, M. & Chambon, P. Nucleic Acids Res. 9, 2589–2598 (1981).

    Article  CAS  Google Scholar 

  9. Wood, W. I. & Felsenfeld, G. J. biol. Chem. 13, 7730–7736 (1982).

    Google Scholar 

  10. Finch, J. T. & Klug, A. Proc. natn. Acad. Sci. U.S.A. 73, 1897–1901 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Musich, P. R., Maio, J. & Brown, F. L. J. molec. Biol. 117, 651–677 (1977).

    Article  Google Scholar 

  12. Fittler, F. & Zachau, H. G. Nucleic Acids. Res. 7, 1–17 (1979).

    Article  CAS  Google Scholar 

  13. Pruitt, S. L. & Grainger, R. M. Cell 23, 711–720 (1981).

    Article  CAS  Google Scholar 

  14. Lawson, G. M., Tsai, M-J. & O'Malley, B. W. Biochemistry 19 4403–4411 (1980).

    Article  CAS  Google Scholar 

  15. Dolan, M., Sugarman, B. J., Dodgeson, J. B. & Engel, D. Cell 24, 668–677 (1981).

    Article  Google Scholar 

  16. Wozney, J., Hanahan, D., Tate, V., Boedtker, H. & Doty, P. Nature 294, 129–135 (1981).

    Article  ADS  CAS  Google Scholar 

  17. McReynolds, L. A., Catterall, J. & O'Malley, B. W. Gene 2, 217–230 (1978).

    Article  Google Scholar 

  18. Ginder, G. D., Wood, W. I. & Felsenfeld, G. J. biol. Chem. 254, 8099–8102 (1979).

    CAS  PubMed  Google Scholar 

  19. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  20. Rigby, P. W. J., Dickmann, M., Rhodes, C. & Berg, D. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  21. Denhardt, D. Biochem. biophys. Res. Commun. 23, 641–646 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Mills, F., Allan, J. et al. Selective unfolding of erythroid chromatin in the region of the active β-globin gene. Nature 306, 709–712 (1983). https://doi.org/10.1038/306709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306709a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing