Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Can pregalactic stars or black holes generate an IR background?

Abstract

Matsumoto et al. report1 that they have detected an IR background in the waveband 2–5 µm which has a density ΩR 10−4h−2 in units of the critical density (ρcrit = 5 × 10−30h2 g cm−3 with H0 = 50h km s−1 Mpc−1) and an approximately black-body spectrum with a temperature of about 1,500 K. They claim that the intensity is too high to be explained by zodiacal light, interplanetary dust, low mass halo stars or galactic emission, and suggest that it is derived from a generation of pregalactic (population III) stars. We argue here that this is possible only if the stars began forming at a redshift exceeding 40 with a density parameter Ω* 1 and a mass in the range 102–105 M. With such a high density, they could avoid over-enriching the background medium with heavy elements only if they collapsed to black holes after their nuclear burning phase2. These holes may also have contributed to the IR background, provided they formed optically thick accretion disks. However, we argue that holes could generate the entire background only if they have a density parameter ΩB0.1 and a mass in the range 106–108M, in which case they would be too large to have stellar precursors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Matsumoto, T., Akiba, M. & Murakami, H. COSPAR Journal: Advances in Space Research (eds Bignami, G. F. & Sunyaev, R. A.) (Pergamon, Oxford, in the press).

  2. Carr, B. J., Bond, J. R. & Arnett, W. D. Astrophys. J. (in the press).

  3. Bond, J. R., Arnett, W. D. & Carr, B. J. Astrophys. J. (in the press).

  4. Ober, W. W., El Eid, M. F. & Fricke, K. J. Astr. Astrophys. 119, 61 (1983).

    ADS  CAS  Google Scholar 

  5. Dube, R. R., Wicks, W. C. & Wilkinson, D. T. Astrophys. J. 232, 333 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Peebles, P. J. E. & Partridge, R. B. Astrophys. J. 148, 713 (1967).

    Article  ADS  Google Scholar 

  7. Thorstensen, J. R. & Partridge, R. B. Astrophys. J. 200, 527 (1975).

    Article  ADS  Google Scholar 

  8. Sandage, A. R. Astrophys. J. 178, 1 (1972).

    Article  ADS  Google Scholar 

  9. Faber, S. M. & Gallagher, J. S. A. Rev. Astr. Astrophys. 17, 135 (1979).

    Article  ADS  Google Scholar 

  10. Rowan-Robinson, M., Negroponte, J. & Silk, J. Nature 281, 635 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Puget, J. L. & Heyvaerts, J. Astr. Astrophys. 83, L10 (1980).

    ADS  Google Scholar 

  12. Rees, M. J. Nature 275, 35 (1978).

    Article  ADS  Google Scholar 

  13. Carr, B. J. Mon. Not. Rastr. Soc. 195, 669 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Wright, E. L. Astrophys. J. 255, 401 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Alfven, H. & Mendis, A. Nature 266, 699 (1977).

    Article  ADS  Google Scholar 

  16. Wickramasinghe, N. C. et al. Astrophys. Space. Sci. 35, L9 (1975).

    Article  Google Scholar 

  17. Rana, N. C. Mon. Not. R. astr. Soc. 197, 1125 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Fricke, K. J. Astrophys. J. 183, 941 (1973).

    Article  ADS  CAS  Google Scholar 

  19. Carr, B. J. Mon. Not. R. astr. Soc. 194, 639 (1981).

    Article  ADS  Google Scholar 

  20. Mész´ros, P. Astr. Astrophys. 38, 5 (1975).

    ADS  Google Scholar 

  21. Bondi, H. Mon. Not. R. astr. Soc. 112, 195 (1952).

    Article  ADS  Google Scholar 

  22. Eardley, D. M., Lightman, A. P., Payne, D. G. & Shapiro, S. L. Astrophys. J. 224, 53 (1978).

    Article  ADS  Google Scholar 

  23. Sato, H. Prog. theor. Phys. 40, 781 (1968).

    Article  ADS  Google Scholar 

  24. Carr, B. J. Nature 284, 326 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Boldt, E. & Leiter, D. Nature 290, 483 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Liang, E. P. T. Nature 286, 39 (1980).

    Article  ADS  CAS  Google Scholar 

  27. Hayakawa, S. Proc. Semin. Fundamental Studies: Present Attitude and Future Prospect (Colombo, Sri Lanka, 1982).

  28. Carr, B. J. Mon. Not. R. astr. Soc. 189, 123 (1979).

    Article  ADS  Google Scholar 

  29. Ipser, J. R. & Price, R. H. Astrophys. J. 216, 548 (1977).

    Article  ADS  Google Scholar 

  30. Gunn, J. E. & Peterson, B. A. Astrophys. J. 142, 1633 (1965).

    Article  ADS  CAS  Google Scholar 

  31. Takahara, F. Workshop at Nagoya University (March 7–8, 1983).

  32. Hofmann, W. & Lemke, D. Astr. Astrophys. 68, 389 (1979).

    ADS  Google Scholar 

  33. Yang, J., Schramm, D. N., Steigman, G. & Rood, R. T. Astrophys. J. 277, 697 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, B., McDowell, J. & Sato, H. Can pregalactic stars or black holes generate an IR background?. Nature 306, 666–669 (1983). https://doi.org/10.1038/306666a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306666a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing