Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus

Abstract

In infected cells, the RNA genomes of RNA tumour viruses are copied into DNA by a virus-encoded reverse transcriptase enzyme1–3. This transfer of information from RNA into DNA was thought to be a unique feature of RNA tumour viruses3, but recent results suggest it may be a more general strategy. Hepatitis B virus (HBV) has a double-stranded DNA genome, and it has recently been shown that the minus DNA strand of the HBV genome is copied from a plus-strand RNA template, leading to the suggestion that reverse transcription is central to the life cycle of HBV4–6. More recently it has been suggested that the replication cycle of a plant virus, cauliflower mosaic virus (CaMV), includes a reverse transcription step7–9. We report here the existence of amino acid sequence homology between retroviral reverse transcriptase and the putative polymerases of HBV and CaMV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Teich, N. RNA Tumor Viruses (eds Weiss, R., Teich, N., Varmus, H. & Coffin, J.) 25–207 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  2. Varmus, H. & Swanstrom, R. RNA Tumor Viruses (eds Weiss, R., Teich, N., Varmus, H. & Coffin, J.) 369–512 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  3. Varmus, H. Science 216, 812–820 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Tiollais, P., Charnay, P. & Vyas, G. N. Science 213, 406–411 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Summer, J. & Mason, W. S. Cell 29, 403–415 (1982).

    Article  Google Scholar 

  6. Varmus, H. E. Nature 299, 204–205 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hull, R. & Covey, S. N. Trends biochem. Sci. 8, 119–121 (1983).

    Article  CAS  Google Scholar 

  8. Guilley, H., Richards, K. E. & Jonard, G. EMBO J. 2, 277–282 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pfeiffer, P. & Hohn, T. Cell 33, 781–789 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz, R. M. & Dayhoff, M. O. Atlas of Protein Sequence and Structure Vol. 5, suppl. 3 (ed. Dayhoff, M. O.) 353–358 (National Biomedical Research Foundation, Washington, 1978).

    Google Scholar 

  11. MacLachlan, A. D. J. molec. Biol. 61, 409–417 (1971).

    Article  Google Scholar 

  12. Miyata, T., Miyazawa, S. & Yasunaga, T. J. molec. Evol. 12, 219–236 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Dickerson, R. E. J. molec. Evol. 1, 26–45 (1971).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kimura, M. & Ohta, T. Proc. natn. Acad. Sci. U.S.A. 71, 2848–2852 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Wilson, A. C., Carson, S. S. & White, T. J. A. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  Google Scholar 

  16. Shinnick, T. M., Lerner, R. A. & Sutcliffe, J. G. Nature 293, 543–548 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Schwarts, D. E., Tizard, R. & Gilbert, W. Cell 32, 853–869 (1983).

    Article  Google Scholar 

  18. Ono, Y. et al. Nucleic Acids Res. 11, 1747–1757 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gardner, R. C. et al. Nucleic Acids Res. 9, 2871–2888 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyata, T. & Yasunaga, T. J. molec. Evol. 16, 23–36 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Miyata, T., Yasunaga, T. & Nishida, T. Proc. natn. Acad. Sci. U.S.A. 77, 7328–7332 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Miyata, T. & Yasunaga, T. Nature 272, 532–535 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Jones, K. L., Huddleston, J. A. & Brownlee, G. G. Nucleic Acids Res. 11, 1555–1566 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bishop, D. H., Huddleston, J. A. & Brownlee, G. G. Nucleic Acids Res. 10, 1335–1343 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bishop, D. H., Jones, K. L., Huddleston, J. & Brownlee, G. G. Virology 120, 481–489 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Kitamura et al. Nature 291, 547–553 (1981).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Gingeras, T. R. et al. J. biol. Chem. 257, 13475–13491 (1982).

    CAS  PubMed  Google Scholar 

  28. Joyce, C. M., Kelly, W. S. & Grindley, N. D. F. J. biol. Chem. 257, 1958–1964 (1982).

    CAS  PubMed  Google Scholar 

  29. Golomb, M., Grandgenett, D. P. & Mason, W. J. Virol. 38, 548–555 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Grandgenett, D. P., Golomb, M. & Vola, A. C. J. Virol. 33, 264–271 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanaya, S. & Crouch, R. J. J. biol. Chem. 258, 1276–1281 (1983).

    CAS  PubMed  Google Scholar 

  32. Seiki, M., Hattori, S., Hirayama, Y. & Yoshida, M. Proc. natn. Acad. Sci. U.S.A. 80, 3618–3622 (1983).

    Article  ADS  CAS  Google Scholar 

  33. Furutani, Y. et al. Nature 301, 537–540 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Sankoff, D. Proc. natn. Acad. Sci. U.S.A. 69, 4–6 (1972).

    Article  ADS  CAS  Google Scholar 

  35. Galibert, F., Chen, T. N. & Mandart, E. J. Virol. 41, 51–65 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toh, H., Hayashida, H. & Miyata, T. Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus. Nature 305, 827–829 (1983). https://doi.org/10.1038/305827a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305827a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing