Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A single gene for bovine high molecular weight and low molecular weight kininogens

Abstract

A potent vasoactive peptide, bradykinin, is liberated from two distinct kininogens designated low molecular weight (LMW) and high molecular weight (HMW) kininogens1. We have recently cloned and sequenced cDNAs for bovine LMW prekininogens and indicated that LMW prekininogens are encoded by two very similar but distinct mRNAs2. This study concerns the structural basis for the relationship between HMW and LMW prekininogen mRNAs by examination of cDNA clones for bovine HMW prekininogens and a genomic clone. Two types of cDNAs for HMW prekininogens have been identified. The deduced sequences of these two mRNAs are identical with those of two LMW prekininogen mRNAs up to the regions preceding the sequences specifying the divergent C-terminal regions of HMW and LMW kininogens, with one-to-one correspondence. In genomic DNA, the sequence precisely corresponding to the divergent 3′-terminal region of LMW prekininogen mRNA is located after 87 nucleotides downstream from the sequence specifying the 3′-untranslated region of HMW prekininogen mRNA. Based on these findings, we conclude that HMW and LMW prekininogen mRNAs are transcribed from the same gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iwanaga, S. et al. in Biological Functions of Proteinases (eds Holzer, H. & Tschesche, H.) 243–259 (Springer, Berlin, 1979).

    Book  Google Scholar 

  2. Nawa, H. et al. Proc. natn. Acad. Sci. U.S.A. 80, 90–94 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Kato, H., Han, Y. N., Iwanaga, S., Suzuki, T. & Komiya, M. J. Biochem., Tokyo 80, 1299–1311 (1976).

    Article  CAS  Google Scholar 

  4. Ziff, E. B. Nature 287, 491–499 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Nevins, J. R. Cell 28, 1–2 (1982).

    Article  CAS  Google Scholar 

  6. Alt, F. W. et al. Cell 20, 293–301 (1980).

    Article  CAS  Google Scholar 

  7. Rogers, J. et al. Cell 20, 303–312 (1980).

    Article  CAS  Google Scholar 

  8. Early, P. et al. Cell 20, 313–319 (1980).

    Article  CAS  Google Scholar 

  9. Maki, R. et al. Cell 24, 353–365 (1981).

    Article  CAS  Google Scholar 

  10. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Nature 298, 240–244 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).

    Article  CAS  Google Scholar 

  12. Rocha e Silva, M., Beraldo, W. T. & Rosenfeld, G. Am. J. Physiol. 156, 261–273 (1949).

    PubMed  Google Scholar 

  13. Armstrong, D., Jepson, J. B., Keele, C. A. & Stewart, J. W. J. Physiol., Lond. 135, 350–370 (1957).

    Article  CAS  Google Scholar 

  14. Holdstock, D. J., Mathias, A. P. & Schachter, M. Br. J. Pharmac. Chemother. 12, 149–158 (1957).

    Article  CAS  Google Scholar 

  15. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  16. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  17. McMaster, G. K. & Carmichael, G. G. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Weinstock, R., Sweet, R., Weiss, M., Cedar, H. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 75, 1299–1303 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  21. Polsky, F., Edgell, M. H., Seidman, J. G. & Leder, P. Analyt. Biochem. 87, 397–410 (1978).

    Article  CAS  Google Scholar 

  22. Leder, P., Tiemeier, D. & Enquist, L. Science 196, 175–177 (1977).

    Article  ADS  CAS  Google Scholar 

  23. Blattner, F. R. et al. Science 196, 161–169 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, N., Takagaki, Y., Furuto, S. et al. A single gene for bovine high molecular weight and low molecular weight kininogens. Nature 305, 545–549 (1983). https://doi.org/10.1038/305545a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305545a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing