Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein-primed RNA synthesis by purified poliovirus RNA polymerase

Abstract

A small protein, VPg, is covalently linked to the 5′ end of the plus-stranded poliovirus genomic RNA1,2,3. Poliovirus messenger RNA, identical in nucleotide sequence to genomic RNA, is not capped at its 5′ end by the methylated structure that is common to most eukaryotic mRNAs. These discoveries presented two problems. First, as cap structures are usually required for translation of mRNA into protein, how does this uncapped viral RNA act as a template for translation? Second, what is the function of VPg? The identification of the internal ribosomal-entry site, which allows the entry of ribosomes into viral mRNA independently of the 5′ mRNA end, has solved the first conundrum4,5,6. Here we describe the resolution of the second problem. VPg is linked to the genomic RNA through the 5′-terminal uridylic acid of the RNA. We show that VPg can be uridylylated by the poliovirus RNA polymerase 3Dpol. Uridylylated VPg can then prime the transcription of polyadenylate RNA by 3Dpol to produce VPg-linked poly(U). Initiation of transcription of the poliovirus genome from the polyadenylated 3′ end therefore depends on VPg.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uridylylation of VPg and synthesis of VPg–poly(U) in vitro by poliovirus polymerase 3Dpol.
Figure 2: Uridylylation of VPg and synthesis of VPg–poly(U) as a function of UTP concentration.
Figure 3: Identification of the elongated product as VPg–poly(U).
Figure 4: Uridylylation of VPg and synthesis of VPg–poly(U) as a function of 3Dpol concentration.
Figure 5: Uridylylation of VPg and synthesis of VPg–poly(U) by wild-type (WT) and mutant M394T-3Dpol at 30 °C and 36 °C.
Figure 6: The use of wild-type and mutant VPg peptides as substrates for uridylylation by 3Dpol.
Figure 7: Model of the initiation of poliovirus RNA replication.

Similar content being viewed by others

References

  1. Lee, Y. F., Nomoto, A. & Wimmer, E. in Progress in Nucleic Acid Research and Molecular Biology (eds Davidson, J. N. & Coh, W. E.) 89–96 (Academic, New York, (1976)).

    Google Scholar 

  2. Lee, Y. F., Nomoto, A., Detjen, B. M. & Wimmer, E. Aprotein covalently linked to poliovirus genome RNA. Proc. Natl Acad. Sci. USA 74, 59–63 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Flanegan, J. B., Petterson, R. F., Ambros, V., Hewlett, M. J. & Baltimore, D. Covalent linkage of a protein to a defined nucleotide sequence at the 5′ terminus of the virion and replicative intermediate RNAs of poliovirus. Proc. Natl Acad. Sci. USA 74, 961–965 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Jang, S. K. et al. Asegment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pelletier, J. & Sonnenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Molla, A., Jang, S. K., Paul, A. V., Reuer, Q. & Wimmer, E. Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus. Nature 356, 255–257 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Kitamura, N. et al. Primary structure, gene organization, and polypeptide expression of poliovirus RNA. Nature 291, 547–553 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Rothberg, P. G., Harris, T. J. R., Nomoto, A. & Wimmer, E. O4-(5′-uridylyl)tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc. Natl Acad. Sci. USA 75, 4868–4872 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Ambros, V. & Baltimore, D. Protein is linked to the 5′ end of poliovirus RNA by a phosphodiester linkage to tyrosine. J. Biol. Chem. 253, 5263–5266 (1978).

    CAS  PubMed  Google Scholar 

  10. Takegami, T., Kuhn, R. J., Anderson, C. W. & Wimmer, E. Membrane-dependent uridylylation of the genome-linked protein VPg of poliovirus. Proc. Natl Acad. Sci. USA 80, 7447–7451 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Takeda, N., Kuhn, R. J., Yang, C.-F., Takegami, T. & Wimmer, E. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells. J. Virol. 60, 43–53 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Toyoda, H., Yang, C.-F., Takeda, N., Nomoto, A. & Wimmer, E. Analysis of RNA synthesis of type 1 poliovirus by using an in vitro molecular genetic approach. J. Virol. 61, 2816–2822 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Flanegan, J. B. & Baltimore, D. Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A). Proc. Natl Acad. Sci. USA 74, 3677–3680 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Yogo, Y. & Wimmer, E. Polyadenylic acid at the 3′-terminus of poliovirus RNA. Proc. Natl Acad. Sci. USA 69, 1877–1882 (1972).

    Article  ADS  CAS  Google Scholar 

  15. Yogo, Y. & Wimmer, E. Sequence studies of poliovirus RNA. III. Polyuridylic acid and polyadenylic acid as components of the purified poliovirus replicative intermediate. J. Mol. Biol. 92, 467–477 (1975).

    Article  CAS  Google Scholar 

  16. Dorsch-Haesler, K., Yogo, Y. & Wimmer, E. Replication of picornaviruses. I. Evidence from in vitro RNA synthesis that poly(A) of the poliovirus genome is genetically coded. J. Virol. 16, 1512–1517 (1975).

    Google Scholar 

  17. Nomoto, A., Detjen, B. M., Pozatti, R. & Wimmer, E. The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature 268, 208–213 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Wimmer, E. Genome-linked proteins of viruses. Cell 28, 199–201 (1982).

    Article  CAS  Google Scholar 

  19. Esteban, J. A., Bernad, A., Salas, M. & Blanco, L. Metal activation of synthetic and degradative activities of φ29 DNA polymerase, a model enzyme for protein-primed DNA replication. Biochemistry 31, 350–359 (1992).

    Article  CAS  Google Scholar 

  20. Pata, J. D., Schultz, S. C. & Kirkegaard, K. Functional oligomerization of poliovirus RNA-dependent RNA polymerase. RNA 1, 466–477 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Paul, A. . V., Cao, X., Harris, K. S., Lama, J. & Wimmer, E. Stimulation of poly(U) synthesis in vitro by purified poliovirus protein 3AB. J. Biol. Chem. 269, 29173–29181 (1994).

    CAS  PubMed  Google Scholar 

  22. Dreef-Tromp, C. M., van den Elst, H., van den Boogart, J. E., van der Marel, G. A. & van Boom, J. H. Solid-phase synthesis of an RNA nucleopeptide fragment from the nucleoprotein of poliovirus. Nucleic Acids Res. 20, 2435–2439 (1992).

    Article  CAS  Google Scholar 

  23. Barton, D. J. et al. Poliovirus RNA polymerase mutation 3D-M394T results in a temperature-sensitive defect in RNA synthesis. Virology 217, 459–469 (1996).

    Article  CAS  Google Scholar 

  24. Rodriguez, P. L. & Carrasco, L. Gliotoxin: inhibitor of poliovirus RNA synthesis that blocks the viral RNA polymerase 3Dpol. J. Virol. 66, 1971–1976 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao, X. & Wimmer, E. Intragenomic complementation of a 3AB mutant in dicistronic polioviruses. Virology 209, 315–326 (1995).

    Article  CAS  Google Scholar 

  26. Kuhn, R. J. et al. Construction of a ‘mutagenesis cartridge’ for poliovirus genome-linked viral protein: isolation and characterization of viable and nonviable mutants. Proc. Natl Acad. Sci. USA 85, 519–523 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Xiang, W., Cuconati, A., Paul, A. V., Cao, X. & Wimmer, E. Molecular dissection of the multifunctional poliovirus RNA-binding protein 3AB. RNA 1, 892–904 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Richards, O. & Ehrenfeld, E. Poliovirus RNA replication. Curr. Top. Microbiol. Immunol. 161, 89–119 (1990).

    CAS  PubMed  Google Scholar 

  29. Salas, M. Protein-priming of DNA replication. Annu. Rev. Biochem. 60, 39–71 (1991).

    Article  CAS  Google Scholar 

  30. Hsieh, J.-C., Yoo, S.-K. & Ito, J. An essential arginine residue for protein-primed DNA replication. Proc. Natl Acad. Sci. USA 87, 8665–8669 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Salas for helpful discussion; J. Lyle and K. Kirkegaard for purified M394T-3Dpol; and A. Wimmer and M. Shepley for critical reading of the manuscript. This work was supported by the National Institute of Allergy and Infectious Diseases of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniko V. Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, A., van Boom, J., Filippov, D. et al. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393, 280–284 (1998). https://doi.org/10.1038/30529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30529

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing