Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequency tuning in a frog vestibular organ

Abstract

Several distinct mechanisms have evolved in the auditory periphery to extract frequency information from a sound. In the mammalian cochlea, a travelling wave on the basilar membrane1 enhanced by a physiologically vulnerable neuro-mechanical interaction2,3 performs the primary frequency separation. In lizards, tuning is likely to depend on structures in the papilla other than the basilar membrane4, and tuning in the auditory nerve is correlated with the length of the stereocilia5. In turtles6 and possibly some bird species7, an electrical resonance in the receptor cells is responsible for frequency selectivity. In addition to those organs obviously specialized to detect acoustic stimuli, afferents of the vestibular system can exhibit tuning to low-frequency airborne sounds8,9, despite the absence of mechanical frequency separation by accessory structures. I report here that in the frog saccule, a vestibular organ apparently constructed for the detection of vibratory accelerations8–10, frequency tuning may arise from an electrical resonance intrinsic to the hair cells. The mechanism is similar to that found in turtle6 and ensures that a stimulus with frequency corresponding to the membrane resonant frequency will produce the largest signal in the cell. This type of tuning may thus be quite widespread. Oscillatory mechanisms have been reported in sensory cells of other modalities in several lower vertebrates6,11,12, and may even contribute to their sensitivity, although such mechanisms do imply that the signal-to-noise ratio is degraded near threshold.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. v. Bekesy, G. Experiments in Hearing (McGraw-Hill, New York, 1960).

    Google Scholar 

  2. Davis, H. Hearing Res. 9, 79–90 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Sellick, P. M., Patuzzi, R. & Johnstone, B. M. J. acoust. Soc. Am. 72, 131–141 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Weiss, T. F., Peake, W. T., Ling, A. & Holton, H. in Evoked Electrical Activity in the Auditory Nervous System (eds Naunton, R. F. & Fernandez, C.) 91–112 (Academic, London, 1978).

    Google Scholar 

  5. Turner, R. G., Muraski, A. A. & Nielson, D. W. Science 213, 1519–1521 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Crawford, A. C. & Fettiplace, R. J. Physiol., Lond. 312, 377–412 (1981).

    Article  CAS  Google Scholar 

  7. Manley, G. A. Naturwissenschaften 66, 582–84 (1979).

  8. Lewis, E. R., Leverenz, E. C. & Koyama, H. J. comp. Physiol. 145, 437–445 (1982).

    Article  Google Scholar 

  9. Koyama, H., Lewis, E. R., Leverenz, E. L. & Baird, R. A. Brain Res. 250, 168–172 (1982).

    Article  CAS  Google Scholar 

  10. Moffat, J. M. & Capranica, R. J. comp. Physiol. 105, 1–8 (1976).

    Article  Google Scholar 

  11. Clusin, W. T. & Bennett, M. V. L. J. gen. Physiol. 69, 145–182 (1977).

    Article  CAS  Google Scholar 

  12. Fain, G. L., Gerschenfeld, H. M. & Quandt, F. J. Physiol., Lond. 303, 495–513 (1980).

    Article  CAS  Google Scholar 

  13. Ashmore, J. F. & Russell, I. J. J. Physiol., Lond. 329, 26P–27P (1982).

    Google Scholar 

  14. Hudspeth, A. J. & Corey, D. P. Proc. natn. Acad. Sci. U.S.A. 74, 2407–2411 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Corey, D. P. & Hudspeth, A. J. Nature 281, 675–677 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Weiss, T. F. Hearing Res. 7, 353–360 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Harris, G. G. J. acoust. Soc. Am. 44, 176–186 (1968).

    Article  ADS  CAS  Google Scholar 

  18. Sommerfeld, A. Thermodynamics and Statistical Mechanics (Academic, New York, 1956).

    MATH  Google Scholar 

  19. Ashmore, J. F. & Russell, I. J. J. submicrosc. Cytol. 15, 163–166 (1983).

    CAS  PubMed  Google Scholar 

  20. Art, J. J., Crawford, A. C., Fettiplace, R. & Fuchs, P. Proc. R. Soc. B216, 377–384 (1982).

    ADS  CAS  Google Scholar 

  21. Eatock, R. A., Corey, D. P. & Hudspeth, A. J. Soc. Neurosci. Abstr. 5, 19 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashmore, J. Frequency tuning in a frog vestibular organ. Nature 304, 536–538 (1983). https://doi.org/10.1038/304536a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304536a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing