Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcription of the KpnI families of long interspersed DNAs in human cells

Abstract

The mammalian genome contains a variety of interspersed repetitive sequences of unknown function. It has, however, been suggested that interspersed repetitive sequences and their RNA transcripts are involved in the coordinate regulation of gene expression1. Two major families of interspersed sequences in primates are the so-called Alu and KpnI families2–13. Members of the KpnI families range in length from 1.2 to over 6 kilobases (kb). They exist in generally clustered arrangements, in 6 × 104 to 105 copies per diploid genome. Something is known of the arrangements of KpnI family sequences near human structural genes4,7,11,12, but there has been no information on transcription of the sequences. We report here that the KpnI sequences are transcribed in HeLa cells by RNA polymerase II into abundant and heterogeneous species of RNA. The transcripts range in length from about 200 bases to over 5 kb, and are found predominantly in the non-polyadenylated fraction of the nuclear RNA. Transcripts homologous to both of the complementary strands of the KpnI sequences are present, but with a strong bias towards one strand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davidson, E. H. & Britten, R. J. Science 204, 1052–1059 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Schmid, C. W. & Jelinek, W. R. Science 216, 1065–1070 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Musich, P. R., Brown, F. L. & Maio, J. J. Chromosoma 80, 331–348 (1980).

    Article  CAS  Google Scholar 

  4. Adams, J. W., Kaufman, R. E., Kretschmer, P., Harrison, M. & Nienhuis, A. W. Nucleic Acids Res. 8, 6113–6128 (1980).

    Article  CAS  Google Scholar 

  5. Schmeckpeper, B. J., Willard, H. F. & Smith, D. D. Nucleic Acids Res. 9, 1853–1872 (1981).

    Article  CAS  Google Scholar 

  6. Maio, J. J., Brown, F. L., McKenna, G. W. & Musich, P. R., 83, 127–144 (1981).

  7. Jagadeeswaren, P. et al. ICN–UCLA Symp. molec. Cell Biol. 23, 71–84 (1981).

    Google Scholar 

  8. Shafit-Zagardo, B., Maio, J. J. & Brown, F. L. Nucleic Acids Res. 10, 3175–3193 (1982).

    Article  CAS  Google Scholar 

  9. Manuelidis, L. Nucleic Acids Res. 10, 3211–3219 (1982).

    Article  CAS  Google Scholar 

  10. Manuelidis, L. & Biro, P. A. Nucleic Acids Res. 10, 3221–3239 (1982).

    Article  CAS  Google Scholar 

  11. Shafit-Zagardo, B., Brown, F. L., Maio, J. J. & Adams, J. W. Gene 20, 397–407 (1982).

    Article  CAS  Google Scholar 

  12. Gillespie, D., Adams, J. W., Costanzi, C. & Caranfa, M. J. Gene 20, 409–414 (1982).

    Article  CAS  Google Scholar 

  13. Grimaldi, G. & Singer, M. F. Nucleic Acids Res. 11, 321–338 (1983).

    Article  CAS  Google Scholar 

  14. Weiner, A. M. Cell 22, 209–218 (1980).

    Article  CAS  Google Scholar 

  15. Roeder, R. G. in RNA Polymerase (eds Losick, R. & Chamberlin, M.) 285–329 (Cold Spring Harbor Laboratory, New York, 1976).

    Google Scholar 

  16. Duncan, C. et al. Proc. natn. Acad. Sci. U.S.A. 76, 5095–5099 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Hofer, E. & Darnell, J. E. Cell 23, 585–593 (1981).

    Article  CAS  Google Scholar 

  18. Berger, S. L. & Birkemeier, C. S. Biochemistry 18, 5143–5149 (1979).

    Article  CAS  Google Scholar 

  19. Soeiro, R. & Darnell, J. E. J. molec. Biol. 44, 551–562 (1969).

    Article  CAS  Google Scholar 

  20. Nevins, J. R. Meth. Enzym. 65, 768–785 (1980).

    Article  CAS  Google Scholar 

  21. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  22. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 72, 5201–5205 (1980).

    Article  ADS  Google Scholar 

  23. Wahl, G. M., Stern, M. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 76, 3683–3687 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Southern, E. M. J. molec. Biol. 93, 503–517 (1975).

    Article  Google Scholar 

  25. McKnight, G. S. & Palmiter, R. D. J. biol. Chem. 254, 9050–9058 (1979).

    CAS  Google Scholar 

  26. Groudine, M., Peretz, M. & Weintraub, H. Molec. cell. Biol. 1, 281–288 (1981).

    Article  CAS  Google Scholar 

  27. Maxam, A. M. & Gilbert, G. in Meth. Enzym. 65, 499–580 (1980).

    Google Scholar 

  28. Christophe, D., Brocas, H. & Vassart, G. Analyt. Biochem. 120, 259–261 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafit-Zagardo, B., Brown, F., Zavodny, P. et al. Transcription of the KpnI families of long interspersed DNAs in human cells. Nature 304, 277–280 (1983). https://doi.org/10.1038/304277a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304277a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing